Porphyrin-based supramolecular nanoassemblies of a spherical morphology have been attracting broad interest owing to their wide application possibilities in numerous fields of paramount significance. Most of the existing assembly protocols, however, either suffer from the requirement of elaborately-designed yet tediously-synthesized ad hoc porphyrins, the use of surfactant templates, or accurate consideration of the experimental parameters etc. The initiation of a facile surfactant-free fabrication protocol performable under ambient conditions using commercial porphyrins as building blocks is strongly desired. We herein report that a commercial metal-free porphyrins, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TPPNH2), could be facilely organized to form well-defined discrete spherical nanoassemblies at room temperature by means of a simple reprecipitation method. We further find that the as-manufactured TPPNH2 nanospheres could work as photocatalysts towards the reduction of potassium tetrachloroplatinate(ii), leading to their self-platinization and the production of platinum/porphyrin nanosphere nanocomposites, wherein ultrathin Pt nanoparticles of a size of ca. 3 nm are immobilized on the porphyrin nanospheres. Significantly, by taking the advantage of their easy sedimentation from aqueous suspensions, we show that the as-produced composites could serve as qualified heterogeneous nanocatalysts in terms of their excellent catalytic stability and recyclability towards the reduction of 4-nitrophenol, where the catalytic reactivity exhibits only trivial changes even after the reactions have been repeated 8 times continuously. Taking into account the general concerns of porphyrins- and Pt-based nanostructures, this might provide a facile method for the construction of spherical porphyrin nanostructures with self-platinization capability. Meanwhile, considering the high cost and scarcity of Pt, our nanocomposites with excellent stability and recyclability likely have a bright future of potential uses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp00173a | DOI Listing |
ACS Nano
January 2025
Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.
View Article and Find Full Text PDFTheranostics
January 2025
Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).
View Article and Find Full Text PDFNano Lett
December 2024
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
Nano-supramolecules based on artificial macrocycles can not only regulate assembly morphology but also boost phosphorescence resonance energy transfer (PRET). Herein, a water-soluble phosphorescence supramolecule was constructed from the hyaluronic acid-modified bromophenylpyridinium (HAPY), cucurbit[]uril (CB[], = 7/8), and energy acceptor phenyl-bridged phenothiazine derivatives, displaying efficient PRET and achieving near-infrared (NIR) phosphorescence by macrocyclic CB[] and the assembly confinements. As compared with weak phosphorescent nanofibers of HAPY/CB[7], the spherical nanoparticles of HAPY/CB[8] not only gave strong green phosphorescence with extended lifetime to 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
Soft Matter
December 2024
Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
Peptide-polymer systems hold strong potential for applications in nanotherapeutics. Desmopressin, a synthetic analogue of the antidiuretic hormone arginine vasopressin, may serve as a valuable case of study in this context since it is a first-line treatment for disorders affecting water homeostasis, including diabetes insipidus. It also has an established use as a hemostatic agent in von Willebrand disease, and recently, its repurposing has been suggested as a neoadjuvant in the treatment of certain types of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!