The crystal structure and transport properties (2-723 K) of the homologous compound Pb5Bi6Se14 with partial substitution of Te for Se are studied by means of powder X-ray diffraction, scanning electron microscopy, electrical resistivity, thermopower, thermal conductivity and Hall effect measurements. Polycrystalline samples of Pb5Bi6Se14-xTex (0 ≤ x ≤ 1.0) were prepared by a two-step synthesis method based on the pseudo-binary PbSe-Bi2Se3 phase diagram combined with Te substitution in the PbSe precursor. The successful insertion of Te into the crystal structure of Pb5Bi6Se14 was confirmed by powder X-ray diffraction and scanning electron microscopy. Transport property measurements indicate an increase in the heavily doped character of the transport with increasing the Te concentration. The extremely low lattice thermal conductivity values (0.3-0.4 W m-1 K-1 at 723 K) that approach the glassy limit at high temperatures are nearly independent of the chemical composition suggesting no influence on point-defect scattering mechanisms in the substituted compounds. Despite the inherent complexity of this system, the evolution of the electronic properties with x is well described by a simple single-parabolic band model. Because the increase in the power factor with increasing x is compensated by the concomitant increase in the electronic thermal conductivity, this substitution does not yield enhanced ZT values with respect to the pristine compound with a similar peak ZT value of 0.5 achieved at 723 K. Nevertheless, the simple synthetic method used in this study to insert a doping element opens new avenues for controlling the transport properties of the homologous series (PbSe)5(Bi2Se3)3m (m = 1, 2 and 3).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt04916aDOI Listing

Publication Analysis

Top Keywords

transport properties
12
thermal conductivity
12
≤ ≤
8
crystal structure
8
powder x-ray
8
x-ray diffraction
8
diffraction scanning
8
scanning electron
8
electron microscopy
8
synthesis transport
4

Similar Publications

Tuning the Selectivity in the Nonoxidative Alkane Dehydrogenation Reaction by Potassium-Promoted Zeolite-Encapsulated Pt Catalysts.

JACS Au

December 2024

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.

The significance of the nonoxidative dehydrogenation of middle-chain alkanes into corresponding alkenes is increasing in the context of the world's declining demands on transportation fuels and the growing demand for chemicals and materials. The middle-chain alkenes derived from the dehydrogenation reaction can be transformed into value-added chemicals in downstream processes. Due to the presence of multiple potential reaction sites, the reaction mechanism of the dehydrogenation of middle-chain alkanes is more complicated than that in the dehydrogenation of light alkanes, and there are few prior studies on elucidating their detailed structure-reactivity relationship.

View Article and Find Full Text PDF

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

Molecularly Designed and Nanoconfined Polymer Electronic Materials for Skin-like Electronics.

ACS Cent Sci

December 2024

Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.

Stretchable electronics have seen substantial development in skin-like mechanical properties and functionality thanks to the advancements made in intrinsically stretchable polymer electronic materials. Nanoscale phase separation of polymer materials within an elastic matrix to form one-dimensional nanostructures, namely nanoconfinement, effectively reduces conformational disorders that have long impeded charge transport properties of conjugated polymers. Nanoconfinement results in enhanced charge transport and the addition of skin-like properties.

View Article and Find Full Text PDF

Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure.

Precis Chem

December 2024

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design.

View Article and Find Full Text PDF

Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!