Gene expression profiling by microarray has been used to uncover molecular variations in many areas. The traditional analysis method to gene expression profiling just focuses on the individual genes, and the interactions among genes are ignored, while genes play their roles not by isolations but by interactions with each other. Consequently, gene-to-gene coexpression analysis emerged as a powerful approach to solve the above problems. Then complementary to the conventional differential expression analysis, the differential coexpression analysis can identify gene markers from the systematic level. There are three aspects for differential coexpression network analysis including the network global topological comparison, differential coexpression module identification, and differential coexpression genes and gene pairs identification. To date, the coexpression network and differential coexpression analysis are widely used in a variety of areas in response to environmental stresses, genetic differences, or disease changes. In this chapter, we reviewed the existing methods for differential coexpression network analysis and discussed the applications to cancer research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7717-8_9DOI Listing

Publication Analysis

Top Keywords

differential coexpression
28
coexpression network
16
network analysis
12
gene expression
12
coexpression analysis
12
differential
8
analysis
8
expression profiling
8
coexpression
8
network
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!