When a water droplet slides down a hydrophobic surface, a major energy it possesses is kinetic energy. However, people may ignore another important energy source: triboelectrification. To quantify and utilize triboelectrification energy, a phenomenon is presented in this study: one droplet slides down a tilted chip with a hydrophobic coating and patterned electrodes, triboelectrification happens and the induced charges are transferred to another horizontally placed chip with copper wires, on which another droplet is actuated by the transferred charges. The mechanism of this phenomenon is triboelectrification, electrostatic induction and EWOD (electrowetting on dielectrics). When an 80 μL droplet slides down the chip, the induced charges build up a potential difference between the electrodes of 46 V. With this potential difference, the droplet actuation is achieved not only on the horizontal chip, but also on the vertical chip. By patterning a comb-shaped electrode, functions for droplet manipulations are achieved. Theoretical analysis is conducted to quantify the frictional force, gravitational force and driving force (EWOD force). The presented concept and device could be employed for a self-powered digital microfluidics (DMF) system, replacing the bulky and energy consuming voltage sources which are commonly used in DMF devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7lc01259d | DOI Listing |
Biosensors (Basel)
December 2024
School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Biochemistry and Chemistry, La Trobe University, Bundoora, VIC 3086, Australia.
Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA.
Mass spectrometry-based investigation of the heterogeneous glycoproteome from complex biological specimens is a robust approach to mapping the structure, function, and dynamics of the glycome and proteome. Sampling whole wet tissues often provides a large amount of starting material; however, there is a reasonable variability in tissue handling prior to downstream processing steps, and it is difficult to capture all the different biomolecules from a specific region. The on-slide tissue digestion approach, outlined in this protocol chapter, is a simple and cost-effective method that allows comprehensive mapping of the glycoproteome from a single spot of tissue of 1 mm or greater diameter.
View Article and Find Full Text PDFSoft Matter
December 2024
Department of Materials, ETH Zürich, Zürich 8093, Switzerland.
The surface tension of partially wetting droplets deforms soft substrates. These deformations are usually localized to a narrow region near the contact line, forming a so-called 'elastocapillary ridge.' When a droplet slides along a substrate, the movement of the elastocapillary ridge dissipates energy in the substrate and slows the droplet down.
View Article and Find Full Text PDFAnal Sci
November 2024
Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Calibrations in LA-ICP-MS are typically very time-consuming and complex, as they need to be matched to the samples being measured and sectioned on a microtome. Alternatively, gelatin can be in droplet form or as a section, which is a more recent development. In this study, we report on investigations where hot multi-element gelatin solutions are placed in a linear fashion on microscopic slides to conduct comparative statistical observations between doped tissue homogenates from the liver and lung.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!