Polyploid genomes evolve and follow a series of dynamic transfigurations along with adaptation and speciation. The initial formation of a new polyploid individual within a diploid population usually involves a triploid bridge, a two-step mechanism of cell fusions between ubiquitous (reduced) and rare (unreduced) gametes. The primary fusion event creates an intermediate triploid individual with unbalanced genome sets, a situation of genomic-shock characterized by gene expression dysregulation, high dosage sensitivity, disturbed cell divisions, and physiological and reproductive attributes drastically altered. This near-sterile neotriploid must produce (even) eupolyploids through secondary fusion events to restore genome steadiness, meiotic balance, and fertility required for the demographic establishment of a nascent lineage. Natural conditions locate several difficulties to polyploid establishment, including the production of highly unbalanced and rarely unreduced (euploid) gametes, frequency-dependent disadvantages (minority cytotype exclusion), severe fitness loss, and ecological competition with diploid parents. Persistence and adaptation of neopolyploids depend upon genetic and phenotypic novelty coupled to joint selective forces that preserve shock-induced genomic changes (subgenome homeolog partitioning) and drive meiotic (reproductive) stabilization and ecological diversification. Thus, polyploid establishment through the triploid bridge is a feasible but not ubiquitous process that requires a number of low-probability events and singular circumstances. Yet, frequencies of polyploids suggest that polyploid establishment is a pervasive process. To explain this disparity, and supported in experimental evidence, I propose that situations like hybridization and ploidy-state transitions associated to genomic shock and substantial developmental alterations can transiently activate apomixis as a mechanism to halt genomic instability and cancel factors restraining neopolyploid's sexual fertility, particularly in triploids. Apomixis -as a temporal alternative to sex- skip meiosis and syngamy, and thus can freeze genomic attributes, avoid unbalanced chromosomal segregation and increase the formation of unreduced euploid gametes, elude frequency-dependent reproductive disadvantages by parthenogenetic development of the embryo and permissive development of endosperm during seed formation, and increase the effective population size of the neopolyploid lineage favoring the formation rate of eupolyploids compared to aneuploids. The subsequent action of genome resilience mechanisms that alleviate transcriptomic shock and selection upon gene interactions might restore a stable meiosis and sexual fertility within few generations, as observed in synthetic polyploids. Alternatively, provided that resilience mechanisms fail, the neopolyploid might retain apomixis and hold genomically and transcriptionally altered states for many generations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834478 | PMC |
http://dx.doi.org/10.3389/fpls.2018.00230 | DOI Listing |
Mar Biotechnol (NY)
December 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
Background: Intentionally impairing the fecundity of mass-reared insects has important utility in controlling pest species. Typically, sterilized individuals are competed against wild counterparts, reducing pest population size. A novel consideration is creating biocontrol agents with lower reproductive capacity that are less likely to establish permanently or admix with wild populations, which are both emerging as legal barriers.
View Article and Find Full Text PDFPLoS Genet
December 2024
Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
Polyploidy, the result of whole genome duplication (WGD), is widespread across the tree of life and is often associated with speciation and adaptability. It is thought that adaptation in autopolyploids (within-species polyploids) may be facilitated by increased access to genetic variation. This variation may be sourced from gene flow with sister diploids and new access to other tetraploid lineages, as well as from increased mutational targets provided by doubled DNA content.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China.
from Sichuan is a valuable germplasm with high economic potential, but it faces variety scarcity. To address this, this study collected 16 varieties (lines), identifying IpHT1 as a promising parent due to its high oil content (38.5%) and red fruits.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
Nakai ex F. Maek. has been employed in traditional Chinese medicine for millennia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!