Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cysteine protease Caspase-6 (Casp6) is a potential therapeutic target of Alzheimer Disease (AD) and age-dependent cognitive impairment. To assess if Casp6 is essential to human health, we investigated the effect of CASP6 variants sequenced from healthy humans on Casp6 activity. Here, we report the effects of two rare Casp6 amino acid polymorphisms, R65W and G66R, on the catalytic function and structure of Casp6. The G66R substitution eliminated and R65W substitution significantly reduced Casp6 catalytic activity through impaired substrate binding. In contrast to wild-type Casp6, both Casp6 variants were unstable and inactive in transfected mammalian cells. In addition, Casp6-G66R acted as a dominant negative inhibitor of wild-type Casp6. The R65W and G66R substitutions caused perturbations in substrate recognition and active site organization as revealed by molecular dynamics simulations. Our results suggest that full Casp6 activity may not be essential for healthy humans and support the use of Casp6 inhibitors against Casp6-dependent neurodegeneration in age-dependent cognitive impairment and AD. Furthermore, this work illustrates that studying natural single amino acid polymorphisms of enzyme drug targets is a promising approach to uncover previously uncharacterized regulatory sites important for enzyme activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849602 | PMC |
http://dx.doi.org/10.1038/s41598-018-22283-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!