Mutational inactivation of the SWI/SNF chromatin regulator ATRX occurs frequently in gliomas, the most common primary brain tumors. Whether and how ATRX deficiency promotes oncogenesis by epigenomic dysregulation remains unclear, despite its recent implication in both genomic instability and telomere dysfunction. Here we report that Atrx loss recapitulates characteristic disease phenotypes and molecular features in putative glioma cells of origin, inducing cellular motility although also shifting differentiation state and potential toward an astrocytic rather than neuronal histiogenic profile. Moreover, Atrx deficiency drives widespread shifts in chromatin accessibility, histone composition, and transcription in a distribution almost entirely restricted to genomic sites normally bound by the protein. Finally, direct gene targets of Atrx that mediate specific Atrx-deficient phenotypes in vitro exhibit similarly selective misexpression in ATRX-mutant human gliomas. These findings demonstrate that ATRX deficiency and its epigenomic sequelae are sufficient to induce disease-defining oncogenic phenotypes in appropriate cellular and molecular contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849741PMC
http://dx.doi.org/10.1038/s41467-018-03476-6DOI Listing

Publication Analysis

Top Keywords

atrx deficiency
12
glioma cells
8
cells origin
8
atrx
7
atrx inactivation
4
inactivation drives
4
drives disease-defining
4
phenotypes
4
disease-defining phenotypes
4
phenotypes glioma
4

Similar Publications

ATRX loss inhibits DDR to strengthen radio-sensitization in p53-deficent HCT116 cells.

Sci Rep

January 2025

NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.

Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.

View Article and Find Full Text PDF

ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities.

View Article and Find Full Text PDF
Article Synopsis
  • Inactivation of the ATRX gene is a key feature of malignant gliomas, leading to G-quadruplex (G4) DNA structures that cause replication stress and genomic instability.
  • The study tested a drug, CX-5461, on glioma stem cells and mouse models, both alone and with radiation, showing it was particularly effective against ATRX-deficient tumors.
  • The results revealed that CX-5461 increased DNA damage and cell death specifically in ATRX-deficient models, reduced tumor growth, and improved survival in mice, highlighting its potential as a new treatment approach for this type of cancer.
View Article and Find Full Text PDF

HIRA protects telomeres against R-loop-induced instability in ALT cancer cells.

Cell Rep

November 2024

Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA. Electronic address:

Inactivating mutations in chromatin modifiers, like the α-thalassemia/mental retardation, X-linked (ATRX)-death domain-associated protein (DAXX) chromatin remodeling/histone H3.3 deposition complex, drive the cancer-specific alternative lengthening of telomeres (ALT) pathway. Prior studies revealed that HIRA, another histone H3.

View Article and Find Full Text PDF

Purpose: Preclinical studies have identified molecular correlates of sensitivity to ATR inhibition. This translational study was designed to test the ATR inhibitor berzosertib in patients with advanced solid tumors carrying alterations in ATRX, ataxia-telangiectasia-mutated (ATM), genes conferring replication stress (RS), or SDH.

Patients And Methods: Patients were recruited to four cohorts: T1: ATRX-mutant leiomyosarcoma; T2: ATM-mutant solid tumors; T3: solid tumors with mutations in RS-associated genes; and T4: SDH-deficient gastrointestinal stromal tumors (GIST).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!