Objective: Insulin resistance is reflected by the rates of reduced glucose uptake (GU) into the key insulin-sensitive tissues, skeletal muscle, liver and adipose tissue. It is unclear whether insulin resistance occurs simultaneously in all these tissues or whether insulin resistance is tissue specific.

Design And Methods: We measured GU in skeletal muscle, adipose tissue and liver and endogenous glucose production (EGP), in a single session using F-fluorodeoxyglucose with positron emission tomography (PET) and euglycemic-hyperinsulinemic clamp. The study population consisted of 326 subjects without diabetes from the CMgene study cohort.

Results: Skeletal muscle GU less than 33 µmol/kg tissue/min and subcutaneous adipose tissue GU less than 11.5 µmol/kg tissue/min characterized insulin-resistant individuals. Men had considerably worse insulin suppression of EGP compared to women. By using principal component analysis (PCA), BMI inversely and skeletal muscle, adipose tissue and liver GU positively loaded on same principal component explaining one-third of the variation in these measures. The results were largely similar when liver GU was replaced by EGP in PCA. Liver GU and EGP were positively associated with aging.

Conclusions: We have provided threshold values, which can be used to identify tissue-specific insulin resistance. In addition, we found that insulin resistance measured by GU was only partially similar across all insulin-sensitive tissues studied, skeletal muscle, adipose tissue and liver and was affected by obesity, aging and gender.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920018PMC
http://dx.doi.org/10.1530/EJE-17-0882DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
24
adipose tissue
24
insulin resistance
20
muscle adipose
16
tissue liver
16
glucose uptake
8
positron emission
8
emission tomography
8
insulin-sensitive tissues
8
principal component
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!