The aim of this study is to describe the prevalence of single single-nucleotide polymorphisms (SNPs) as well as their combinations in genes encoding proteins involved in the immune response in children with bacterial meningitis. The prospective study group consisted of 39 children with bacterial meningitis and 49 family members surveyed between 2012 and 2016. Eleven SNPs in seven genes involved in immune response were analysed. The mean number of minor frequency alleles (MAF) of studied SNPs was lowest in the control group and highest in patients with pneumococcal meningitis. We found that carrying ≥6 MAF of studied SNPs was associated with an increased risk of pneumococcal meningitis. The prevalence of risky variants was noted to be higher in patients with pneumococcal meningitis as compared to the control group. In conclusion, genetic factors are a relevant factor in determining the susceptibility to bacterial meningitis. A statistically significant cumulative effect of mutated variants on increasing the risk of bacterial meningitis was detected. Combining all three SNPs in MBL2 improves the prediction of susceptibility to pneumococcal meningitis. Analysis of risky alleles can help indicate people prone to the disease who are 'gene-immunocompromised'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852385PMC
http://dx.doi.org/10.1177/1753425918762038DOI Listing

Publication Analysis

Top Keywords

bacterial meningitis
24
pneumococcal meningitis
16
susceptibility bacterial
12
involved immune
12
immune response
12
meningitis
10
single-nucleotide polymorphisms
8
polymorphisms snps
8
snps genes
8
genes involved
8

Similar Publications

Simplified process for preparing native and depolymerized capsular polysaccharides of Streptococcus pneumoniae.

Carbohydr Polym

March 2025

Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:

Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.

View Article and Find Full Text PDF

In young children, pneumococcal meningitis epitomizes the paradigm of a destructive innate inflammatory response in the central nervous system: a five-alarm fire. In contrast, cell-free bacterial components reaching the fetal brain from an infected mother signal a quiet, noninflammatory immune response that drives abnormal neurodevelopment, changing brain architecture through neuroproliferation. This review addresses the difference between prenatal and postnatal bacterial-host signaling within the brain.

View Article and Find Full Text PDF

Purpose: Varicella zoster virus-related encephalitis (VZV-RE) is a rare and often misdiagnosed condition caused by an infection with the VZV. It leads to meningitis or encephalitis, with patients frequently experiencing poor prognosis. In this study, we used metagenomic next-generation sequencing (mNGS) to rapidly and accurately detect and identify the VZV pathogen directly from cerebrospinal fluid (CSF) samples, aiming to achieve a definitive diagnosis for encephalitis patients.

View Article and Find Full Text PDF

Background And Objectives: Administration of intraventricular chemotherapy through Ommaya reservoir is indicated for certain forms of leptomeningeal disease. However, ventricular reservoirs carry a substantial risk of infection. The conventional approach to managing reservoir-associated infections involves removal of the reservoir and systemic antibiotic therapy, but this strategy necessitates additional procedures to remove and subsequently replace the device.

View Article and Find Full Text PDF

IgA1 protease is one of the virulence factors of , and other pathogens causing bacterial meningitis. The aim of this research is to create recombinant proteins based on fragments of the mature IgA1 protease A-P from serogroup B strain H44/76. These proteins are potential components of an antimeningococcal vaccine for protection against infections caused by pathogenic strains of and other bacteria producing serine-type IgA1 proteases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!