It has been found that a cyclodextrin derivative, 2-hydroxypropyl-β-cyclodextrin (HPβCD), has reasonable therapeutic effect on Niemann-Pick disease type C, which is caused by abnormal accumulation of unesterified cholesterol and glycolipids in the lysosomes and shortage of esterified cholesterol in other cellular compartments. We study the binding affinity and mode of HPβCD with cholesterol to elucidate the possible mechanism of HPβCD for removing cholesterol from the lysosomes. The dominant binding mode of HPβCD with cholesterol is found based on the molecular dynamics simulation and a statistical mechanics theory of liquids, or the three-dimensional reference interaction site model theory with Kovalenko-Hirata closure relation. We examine the two types of complexes between HPβCD and cholesterol, namely, one-to-one (1:1) and two-to-one (2:1). It is predicted that the 1:1 complex makes two or three types of stable binding mode in solution, in which the βCD ring tends to be located at the edge of the steroid skeleton. For the 2:1 complex, there are four different types of the complex conceivable, depending on the orientation between the two HPβCDs: head-to-head (HH), head-to-tail (HT), tail-to-head (TH), and tail-to-tail (TT). The HT and HH cyclodextrin dimers show higher affinity to cholesterol compared to the other dimers and to all the binding modes of 1:1 complexes. The physical reason why the HT and HH dimers have higher affinity compared to the other complexes is discussed based on the consistency with the 1:1 complex. On the one hand, in case of the HT and HH dimers, the position of each CD in the dimer along the cholesterol chain comes right on or close to one of the positions where a single CD makes a stable complex. On the other hand, one of the CD molecules is located on unstable region along the cholesterol chain, for the case of TH and TT dimers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.8b02098DOI Listing

Publication Analysis

Top Keywords

binding mode
12
hpβcd cholesterol
12
cholesterol
10
mode hpβcd
8
dimers higher
8
higher affinity
8
complex hand
8
case dimers
8
cholesterol chain
8
hpβcd
5

Similar Publications

By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.

View Article and Find Full Text PDF

Elucidation of the interaction between apo-transferrin and indisulam via multi-spectroscopic techniques and molecular modeling.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:

Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells.

View Article and Find Full Text PDF

Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea.

View Article and Find Full Text PDF

Background And Aims: Sex hormones and sex hormone-binding globulin (SHBG) have been confirmed to involve in the pathophysiology of functional gastrointestinal disorders (FGIDs), including irritable bowel syndrome (IBS) and functional dyspepsia (FD). However, causal associations have not yet been investigated. Utilizing data from Genome-wide association studies, we conducted bidirectional two-sample mendelian randomization (MR) analyses to assess the causal relationships between sex hormones, SHBG and FGIDs.

View Article and Find Full Text PDF

Fungal lectins show differential antiproliferative activity against cancer cell lines.

Int J Biol Macromol

December 2024

BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", University of La Laguna, La Laguna, Spain.

Glycosylation patterns represent an important signature of cancer cells that can be decoded by glycan-binding proteins, i.e., lectins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!