Neuroinflammation has been implicated in the pathology of various psychiatric and neurodegenerative disorders. Accumulating evidence suggests that food components can modulate inflammatory processes, and therefore it could be hypothesized that such nutrients might exhibit therapeutic efficacy against these brain diseases. Rice bran is often discarded as a waste product, although it contains a wide range of potentially useful substances. Several rice fiber components from rice bran have been described as having antiinflammatory properties. This review summarizes the evidence supporting a modulatory effect of rice fiber components on symptoms in several animal models for neuroinflammation. In vitro studies on immune cells and in vivo studies on nutritional intervention in animal models of central and peripheral inflammation are discussed in the context of the potential use of rice fiber components for prevention and treatment of brain diseases in which neuroinflammation is involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/nutrit/nuy011 | DOI Listing |
Cureus
January 2025
Electrophysiology, 3Brain AG, Genova, ITA.
The natural product MGN-3 (Biobran) is a defatted, partially hydrolysed rice bran-derived hemicellulose enzymatically modified with an extract of . It has a high proportion of arabinoxylan. It has a protective action against intracerebroventricular streptozotocin-induced murine sporadic Alzheimer's disease and reverses spatial memory deficit in this disease model.
View Article and Find Full Text PDFNat Prod Res
January 2025
Loyola Centre for Research and Development, Xavier Research Foundation, St. Xavier's College Campus, Ahmedabad, Gujarat, India.
Mycophenolic acid (MPA) is an immunosuppressive/antibiotic drug, biologically produced by the fermentation of Penicillium brevicompactum as its secondary metabolite using submerged (SmF) and solid-state (SSF) fermentation processes. In this study, the SSF of (MTCC 1999) was done in optimised conditions to enhance MPA yield. Substrates including basmati and non-basmati rice, barley, oats, cornflakes, rice bran, and wheat bran were 80% moistened and sterilised.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Science and Technology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
This research aimed to produce a multifunctional bread by adding hydrothermally processed rice bran (RB), green tea extract (GTE), and rosemary extract (RE). In the first step, hydrothermal processing was used to reduce the amount of phytic acid in RB, which decreased by 55 %. Based on the acrylamide amount, texture profile analysis, and color parameters, 3 % RB was selected as the optimum concentration in the bread formulation.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand.
This study aimed to evaluate the cholesterol-regulatory effects of lauric-acid-esterified octacosanol (LEO) and oleic-acid-esterified octacosanol (OEO) compared to their unmodified counterparts and to investigate the underlying mechanisms by partially substituting the fat content in obese C57BL/6J mice induced with a high-fat diet (HFD). Rice bran oil and coconut oil were also investigated as they are rich in oleic acid and lauric acid, respectively. The results showed that all supplemented groups significantly inhibited weight gain induced by the HFD, but the groups treated with esterified octacosanol exhibited a more pronounced effect.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China. Electronic address:
In this experiment, we investigated the structural properties, digestibility, and variations in antioxidant activity of rice bran-tissue peanut protein (RB-TPP), which was created through high-moisture extrusion between peanut protein powder (PPP) and various additions (0 %, 5 %, 10 %, 15 %, and 20 %) of rice bran (RB). The disulfide bonding and hydrophobic interactions were strengthened, and the hydrogen bonding in the RB-TPP was weakened by adding 5-10 % RB. Additionally, the β-sheet content reached its maximum at RB-10 %, which allowed the hydrophobic groups to be encapsulated ina stable protein network fiber structure, enhancing degree of organization, the thermal stability and digestibility of RB-TPP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!