For the purpose of this article, experimental phasing is understood to mean the determination of macromolecular structures by exploiting small intensity differences of Friedel opposites and possibly of reflections measured at different wavelengths or for heavy-atom derivatives, without the use of specific structural models. The SHELX programs provide a robust and efficient route for routine structure solution by the SAD, MAD and related methods, but involve a number of simplifying assumptions that may limit their applicability in borderline cases. The substructure atoms (i.e. those with significant anomalous scattering) are first located by direct methods, and the experimental data are then used to estimate phase shifts that are added to the substructure phases to obtain starting phases for the native reflections. These are then improved by density modification and, if the resolution of the data and the type of structure permit, polyalanine tracing. A number of extensions to the tracing algorithm are discussed; these are designed to improve its performance at low resolution. Given native data to 2.5 Å resolution or better, a correlation coefficient greater than 25% between the structure factors calculated from such a trace and the native data is usually a good indication that the structure has been solved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947774 | PMC |
http://dx.doi.org/10.1107/S2059798317015121 | DOI Listing |
A silicon photonics optical phased array with a two-dimensional matrix of antennas is experimentally demonstrated in which the unitary antennas are optimized such that light can be emitted over a high fraction of the overall array surface. This design strategy can be used to obtain a low divergence emitted beam containing a significant fraction of the total emitted power, at the expense of a reduced beam steering range. This type of device can be suited to phase front correction in optical wireless communications systems.
View Article and Find Full Text PDFTerahertz reconfigurable intelligent surfaces (RIS) stand out from conventional phased arrays thanks to their unique electromagnetic properties and intelligent interconnect paradigms. They are a vital technology for terahertz wireless communication and radar detection systems. Compared with 1-bit coding metasurfaces, 2-bit coding metasurfaces offer significant advantages such as single beam steering and reduced quantization errors.
View Article and Find Full Text PDFPLoS One
January 2025
Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.
Optimal router node placement (RNP) is an effective method for improving the performance of wireless mesh networks (WMN). However, solving the RNP problem in WMN is difficult because it is NP-hard. As a result, this problem can only be solved using approximate optimization algorithms such as heuristics and meta-heuristics.
View Article and Find Full Text PDFbioRxiv
January 2025
John A. Paulson School of Engineering & Applied Sciences, Harvard University.
Proteins drive biochemical transformations by transitioning through distinct conformational states. Understanding these states is essential for modulating protein function. Although X-ray crystallography has enabled revolutionary advances in protein structure prediction by machine learning, this connection was made at the level of atomic models, not the underlying data.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Ningbo Innovation Center, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
The frequency-modulated continuous-wave (FMCW) technology combined with optical phased array (OPA) is promising for the all-solid-state light detection and ranging (LiDAR). We propose and experimentally demonstrate a silicon integrated OPA combined with an optical frequency microcomb for parallel LiDAR system. For realizing the parallel wavelengths emission consistent with Rayleigh criterion, the wide waveguide beyond single mode region combined with the bound state in the continuum (BIC) effect is harnessed to obtain an ultra-long optical grating antenna array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!