Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the physiological control algorithm using sliding mode control method is implemented to track the reference input signal. The controller is developed using feed-forward part, reference model, and steady-state flow estimator. The proposed control method is evaluated using a dynamic heart-pump interaction model incorporating descriptions of the cardiovascular system - rotary blood pump. The immediate response of the controller to preload as well as afterload was studied. Stability and feasibility of the control system were demonstrated through the tests. The results showed that the present controller, which allows the left ventricular to automatically adjust to the right ventricular output, reduces the risk of suction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687417 | PMC |
http://dx.doi.org/10.1049/iet-syb.2017.0052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!