Drought stress provokes jasmonic acid (JA) signaling, which mediates plant stress responses; moreover, growing numbers of studies suggest that JA is involved in the modulation of root development under drought stress. Recently, we showed that JA promotes differentiation of xylem from procambial cells in Arabidopsis roots. Further molecular and genetic approaches revealed that the effect of JA on xylem development is caused by suppression of cytokinin responses, suggesting that JA antagonistically interacts with cytokinin to modulate xylem development. Here, we showed that, similar to JA, drought stress promotes xylem development. This suggests that the antagonistic interaction between JA and cytokinin is involved in drought-mediated xylem development, a hypothesis supported by the observation that drought stress increases JA responses and decreases cytokinin responses. Based on these findings, we propose that drought stress promotes xylem development, and the antagonistic interaction between JA and cytokinin is deeply involved in this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927639 | PMC |
http://dx.doi.org/10.1080/15592324.2018.1451707 | DOI Listing |
Foods
January 2025
Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
Ajowan () is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Agricultural College, Hunan Agricultural University, Changsha 410128, China.
Plant growth and development require water, but excessive water hinders growth. Sesame ( L.) is an important oil crop; it is drought-tolerant but sensitive to waterlogging, and its drought tolerance has been extensively studied.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!