Combinatorial Preconditioning of Rat Brain Cultures with Subprotective Ethanol and Resveratrol Concentrations Promotes Synergistic Neuroprotection.

Neurotox Res

Department of Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.

Published: October 2018

Preconditioning brain cultures with moderate concentrations of ethanol (EtOH) or trans-resveratrol (RES), key red wine constituents, can prevent amyloid-β (Aβ) neurotoxicity. Past studies have indicated that moderate EtOH activates synaptic N-methyl-D-aspartate receptors (NMDAR) that, in part, signal via protein kinase C (PKC) to increase protective antioxidant proteins such as peroxiredoxin-2 (Prx2). RES preconditioning also is reported to involve NMDAR and PKC. However, although moderate, the EtOH and RES concentrations used have been noticeably above circulating levels from two glasses of wine, a daily intake linked to reduced risk of cognitive decline among older social drinkers. Given their mechanistic parallels, we speculated that subprotective EtOH and RES concentrations in a combinatorial preconditioning paradigm might elicit synergistic neuroprotection. To examine this notion, rat cerebellar cultures were pretreated with 10 mM EtOH (circulating concentration after ~ 2 drinks), 5 μM RES, EtOH + RES combinatorially, or media alone (controls). After 3 days, media were removed, and fresh media aliquots containing Aβ (25 μM) were added. Assessing apoptosis 24 h later with Hoescht 33342, neurodegeneration did not differ from controls in cultures separately preconditioned with 10 mM EtOH or 5 μM RES. However, apoptosis was prevented in combinatorially preconditioned cultures. Also, immunoblotting revealed elevated Prx2 levels due to combinatorial pretreatment that correlated with subsequent neuroprotection, whereas Prx2 was unchanged in separately pretreated cultures. Although the protective mechanisms require clarification, synergistically upregulated NMDAR-PKC-Prx2 (and other antioxidant proteins) is a reasonable component. These findings imply that EtOH + RES antioxidant synergy could be involved in neurobenefits attributed to low-moderate wine consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12640-018-9886-2DOI Listing

Publication Analysis

Top Keywords

etoh res
16
combinatorial preconditioning
8
brain cultures
8
synergistic neuroprotection
8
etoh
8
res
8
moderate etoh
8
antioxidant proteins
8
res concentrations
8
10 mm etoh
8

Similar Publications

The reaction mechanisms of ethylene oxide and propylene oxide with food Simulants: Based on experiments and computational analysis.

Food Res Int

February 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Ethylene oxide (EO) and propylene oxide (PO) are widely used as sterilizing agents in the food industry. However, their residues in food packaging can migrate into food and react with it, affecting the accuracy of residue detection in food. This study aims to explore the reaction mechanisms between EO and PO and aqueous food simulants using both experimental and computational methods.

View Article and Find Full Text PDF

Study of the release kinetics of Ethyl Lauroyl Arginate from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) active films.

Food Res Int

January 2025

Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.

This study investigates the underexplored area of the release mechanism and kinetics of the antimicrobial Ethyl Lauroyl Arginate (LAE®) from an innovative active packaging system based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). We evaluated the impact of food simulants and temperatures on LAE® release, diffusion, and partition coefficients. Mathematical modeling was used to elucidate LAE® release kinetics, offering understanding of the release behaviour in food matrices.

View Article and Find Full Text PDF

Tailored recovery of antioxidant fractions enriched in caffeine and phenolic compounds from coffee pulp using ethanol-modified supercritical carbon dioxide.

Food Res Int

January 2025

Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain. Electronic address:

Coffee pulp (CP) is the by-product of coffee processing that urgently needs to be revalorized using sustainable technologies. This work applied a design of experiment (DoE) for modeling the extraction of bioactive compounds from CP using supercritical carbon dioxide (sc-CO) with ethanol as a co-solvent under variable conditions (temperature, pressure, and ethanol percentage). Considering extraction efficiency (per unit of CP) and extraction selectivity (per unit of extract), results showed that ethanol percentage significantly enhanced the efficiency of total phenolic content, as well as the selectivity of chlorogenic acid and protocatechuic acid (p < 0.

View Article and Find Full Text PDF

Background: During the coronavirus disease 2019 (COVID-19) pandemic, there was a marked increase in alcohol consumption. COVID-19 superimposed on underlying liver disease notably worsens the outcome of many forms of liver injury. The goal of a current pilot study was to test the dual exposure of alcohol and COVID-19 infection in an experimental animal model of alcohol-associated liver disease (ALD).

View Article and Find Full Text PDF

A new sesquiterpene, 8,11-epoxy-cadi-3,9-diene (), along with nine known compounds (-), were isolated from the heartwood of . Their structures were elucidated based on NMR spectroscopic data, and by comparison with data previously reported in literature. The hexane extract from the heartwood of , the EtOH extract from the heartwood of , the CHCl-soluble fraction of the EtOH extract, the EtOAc-soluble fraction of the EtOH extract and the compounds - have been evaluated as acetylcholinesterase inhibitors, and among these, the extracts and fractions exhibited satisfactory results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!