The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M and M values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. Graphical Abstract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-018-1916-zDOI Listing

Publication Analysis

Top Keywords

mass spectrum
12
electrospray ionization
8
ionization high-resolution
8
mass spectrometry
8
lignin
8
spectrum deconvolution
8
lignin species
8
formation multiply
8
multiply charged
8
charged species
8

Similar Publications

Identification of novel serum lipid metabolism potential markers and metabolic pathways for oral cancer: a population-based study.

BMC Cancer

January 2025

Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, 1 Xueyuan Road, Fujian, 350108, China.

Objective: This study aims to identify potential lipid biomarkers and metabolic pathways associated with oral cancer (OC). Then to establish and evaluate disease classification models capable of distinguishing OC patients from healthy controls.

Methods: A total of 41 OC patients and 41 controls were recruited from a hospital in Southeast China to examine the serum lipidomics by Ultra-high Performance Liquid Chromatography Q Exactive Mass Spectrometry (UHPLC-QE-MS).

View Article and Find Full Text PDF

Novel predictive biomarkers for atonic postpartum hemorrhage as explored by proteomics and metabolomics.

BMC Pregnancy Childbirth

January 2025

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China.

Background: Postpartum hemorrhage (PPH) is the leading cause of maternal mortality worldwide, with uterine atony accounting for approximately 70% of PPH cases. However, there is currently no effective prediction method to promote early management of PPH. In this study, we aimed to screen for potential predictive biomarkers for atonic PPH using combined omics approaches.

View Article and Find Full Text PDF

The rapid development and worldwide distribution of COVID-19 vaccines is a remarkable achievement of biomedical research and logistical implementation. However, these developments are associated with the risk of a surge of substandard and falsified (SF) vaccines, as illustrated by the 184 incidents with SF and diverted COVID-19 vaccines which have been reported during the pandemic in 48 countries, with a paucity of methods for their detection in supply chains. In this context, matrix-assisted laser desorption ionisation-time of flight (MALDI-ToF) mass spectrometry (MS) is globally available for fast and accurate analysis of bacteria in patient samples, offering a potentially accessible solution to identify SF vaccines.

View Article and Find Full Text PDF

This study employs mechanically synthesized nano-scrap carbon iron filings (nSCIF) as a cost-effective and sustainable catalyst in heterogeneous electro-Fenton process. The catalytic behaviour of nSCIF was studied for the oxidation of cytarabine (CBN) under the influence of various experimental parameters such as pH, catalyst dose and applied current density. The highest removal efficiency (~ 99%) was achieved in 90 min of reaction at pH 3, 0.

View Article and Find Full Text PDF

The nematode Caenorhabditis elegans, widely recognized as a model organism due to its ease of breeding and well-characterized genomes, boasts complete digestive, reproductive, and endocrine systems, as well as conserved signaling pathways shared with mammals. It has become an invaluable resource for metabolomics research, particularly in examining responses to chemical or environmental factors and toxicity assessments. In this article, we provide detailed, step-by-step protocols for cultivating C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!