Expanding the chemical space and simultaneously ensuring synthetic accessibility is of upmost importance, not only for the discovery of effective binders for novel protein classes but, more importantly, for the development of compounds against hard-to-drug proteins. Here, we present AutoCouple, a de novo approach to computational ligand design focused on the diversity-oriented generation of chemical entities via virtual couplings. In a benchmark application, chemically diverse compounds with low-nanomolar potency for the CBP bromodomain and high selectivity against the BRD4(1) bromodomain were achieved by the synthesis of about 50 derivatives of the original fragment. The binding mode was confirmed by X-ray crystallography, target engagement in cells was demonstrated, and antiproliferative activity was showcased in three cancer cell lines. These results reveal AutoCouple as a useful in silico coupling method to expand the chemical space in hit optimization campaigns resulting in potent, selective, and cell permeable bromodomain ligands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833004PMC
http://dx.doi.org/10.1021/acscentsci.7b00401DOI Listing

Publication Analysis

Top Keywords

chemical space
12
bromodomain ligands
8
virtual couplings
8
chemical
4
space expansion
4
bromodomain
4
expansion bromodomain
4
ligands guided
4
guided silico
4
silico virtual
4

Similar Publications

Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals.

J Cheminform

December 2024

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties.

View Article and Find Full Text PDF

Where the microbes aren't.

FEMS Microbiol Rev

December 2024

UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93JZ, UK.

Although a large fraction of Earth's volume and most places beyond the planet lack life because physical and chemical conditions are too extreme, intriguing scientific questions are raised in many environments within or at the edges of life's niche space in which active life is absent. This review explores the environments in which active microorganisms do not occur. Within the known niche space for life, uninhabited, but habitable physical spaces potentially offer opportunities for hypothesis testing, such as using them as negative control environments to investigate the influence of life on planetary processes.

View Article and Find Full Text PDF

Impacts of acid mine drainage remediation in the largest gold mine of Latin America on natural water bodies in the Dominican Republic.

Environ Sci Pollut Res Int

December 2024

Universidad Autónoma de Santo Domingo, Facultad de Ciencias, Zona Universitaria, Distrito Nacional, Santo Domingo, Dominican Republic.

Impacts of the acid mine drainage (AMD) remediation are investigated on the largest gold mine in Latin America, located in the Dominican Republic. Geochemical analysis of suspended matter in water performed in 2022 on water bodies located downstream to the mine, namely, the Margajita River and Lake Hatillo, are compared with analyses made in 2007, before the AMD remediation. The results for the Margajita River show a strong decrease in heavy metal and metalloid concentrations in the dissolved phase for Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sb, and Pb (between 89.

View Article and Find Full Text PDF

Breaking Solvation Dominance Effect Enabled by Ion-Dipole Interaction Toward Long-Spanlife Silicon Oxide Anodes in Lithium-Ion Batteries.

Nanomicro Lett

December 2024

State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.

Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion-dipole interaction between lithium ions (Li) and succinonitrile (SN).

View Article and Find Full Text PDF

The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!