Historical demographic processes and mating systems are believed to be major factors in the shaping of the intraspecies genetic diversity of plants. Among Caryophyllales, the section of the genus within the Amaranthaceae/Chenopodiaceae alliance, is an interesting study model with species and subspecies (, , and differing in geographical distribution and mating system. In addition, one of the species, , mainly diploid, varies in its level of ploidy with a tetraploid cytotype described in the Canary Islands and in Portugal. In this study, we analyzed the nucleotide diversity of chloroplastic and nuclear sequences on a representative sampling of species and subspecies of the section (except ). Our objectives were (1) to assess their genetic relationships through phylogenetic and multivariate analyses, (2) relate their genetic diversity to their mating system, and (3) reconsider the ploidy status and the origin of the Canarian .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838056PMC
http://dx.doi.org/10.1002/ece3.3774DOI Listing

Publication Analysis

Top Keywords

chloroplastic nuclear
8
genetic diversity
8
species subspecies
8
mating system
8
diversity
4
nuclear diversity
4
diversity wild
4
wild beets
4
beets large
4
large geographical
4

Similar Publications

Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.

View Article and Find Full Text PDF

Comparative organelle genomics in Daphniphyllaceae reveal phylogenetic position and organelle structure evolution.

BMC Genomics

January 2025

State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.

View Article and Find Full Text PDF

Paper mulberry is a fiber resource for paper making. Washi, a traditional paper in Japan, has been produced from × , a hybrid between and . Elite strains have been vegetatively propagated and distributed within Japan.

View Article and Find Full Text PDF

Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes.

View Article and Find Full Text PDF

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!