Humoral immune responses against the malaria parasite are an important component of a protective immune response. Antibodies are often directed towards conformational epitopes, and the native structure of the antigenic region is usually critical for antibody recognition. We examined the structural features of various Plasmodium antigens that may impact on epitope location, by performing a comprehensive analysis of known and modelled structures from P. falciparum. Examining the location of known polymorphisms over all available structures, we observed a strong propensity for polymorphic residues to be exposed on the surface and to occur in particular secondary structure segments such as hydrogen-bonded turns. We also utilised established prediction algorithms for B-cell epitopes and MHC class II binding peptides, examining predicted epitopes in relation to known polymorphic sites within structured regions. Finally, we used the available structures to examine polymorphic hotspots and Tajima's D values using a spatial averaging approach. We identified a region of PfAMA1 involving both domains II and III under a high degree of balancing selection relative to the rest of the protein. In summary, we developed general methods for examining how sequence-based features relate to one another in three-dimensional space and applied these methods to key P. falciparum antigens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847524PMC
http://dx.doi.org/10.1038/s41598-018-22592-3DOI Listing

Publication Analysis

Top Keywords

features plasmodium
8
proteome-wide mapping
4
mapping immune
4
immune features
4
plasmodium protein
4
protein three-dimensional
4
structures
4
three-dimensional structures
4
structures humoral
4
humoral immune
4

Similar Publications

Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.

View Article and Find Full Text PDF

Malaria, a life-threatening disease caused by Plasmodium parasites, continues to pose a significant global health threat, with nearly 250 million infections and over 600 000 deaths reported annually by the WHO. Fighting malaria is particularly challenging partly due to the complex life cycle of the parasite. However, technological breakthroughs such as the development of the nucleoside-modified mRNA lipid nanoparticle (mRNA-LNP) vaccine platform, along with the discovery of novel conserved Plasmodium antigens such as the E140 protein, present new opportunities in malaria prevention.

View Article and Find Full Text PDF

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.

View Article and Find Full Text PDF

It is established that reverse hydroxamate analogs of fosmidomycin inhibit the growth of by inhibiting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the non-mevalonate pathway, which is absent in humans. Recent biochemical studies have demonstrated that novel reverse fosmidomycin analogs with phenylalkyl substituents at the hydroxamate nitrogen exhibit inhibitory activities against DXR at the nanomolar level. Moreover, crystallographic analyses have revealed that the phenyl moiety of the -phenylpropyl substituent is accommodated in a previously unidentified subpocket within the active site of DXR.

View Article and Find Full Text PDF

SURFINs protein family expressed on surface of both infected red blood cell and merozoite surface making them as interesting vaccine candidate for erythrocytic stage of malaria infection. In this study, we analyze genetic variation of Pfsurf4.1 gene, copy number variation, and frequency of SURFIN4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!