Endocannabinoids (eCBs) are lipid-signaling molecules involved in the regulation of numerous behaviors and physiological functions. Released by postsynaptic neurons, eCBs mediate retrograde modulation of synaptic transmission and plasticity by activating presynaptic cannabinoid receptors. While the cellular mechanisms by which eCBs control synaptic function have been well characterized, the mechanisms controlling their retrograde synaptic transport remain unknown. Here, we demonstrate that fatty-acid-binding protein 5 (FABP5), a canonical intracellular carrier of eCBs, is indispensable for retrograde eCB transport in the dorsal raphe nucleus (DRn). Thus, pharmacological inhibition or genetic deletion of FABP5 abolishes both phasic and tonic eCB-mediated control of excitatory synaptic transmission in the DRn. The blockade of retrograde eCB signaling induced by FABP5 inhibition is not mediated by impaired cannabinoid receptor function or reduced eCB synthesis. These findings indicate that FABP5 is essential for retrograde eCB signaling and may serve as a synaptic carrier of eCBs at central synapses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879704PMC
http://dx.doi.org/10.1073/pnas.1721339115DOI Listing

Publication Analysis

Top Keywords

retrograde ecb
12
fatty-acid-binding protein
8
synaptic transmission
8
carrier ecbs
8
ecb signaling
8
retrograde
6
ecbs
5
synaptic
5
protein controls
4
controls retrograde
4

Similar Publications

Endocannabinoid (eCB)-mediated suppression of inhibitory synapses has been hypothesized, but this has not yet been demonstrated to occur in vivo because of the difficulty in tracking eCB dynamics and synaptic plasticity during behavior. In mice navigating a linear track, we observed location-specific eCB signaling in hippocampal CA1 place cells, and this was detected both in the postsynaptic membrane and the presynaptic inhibitory axons. All-optical in vivo investigation of synaptic responses revealed that postsynaptic depolarization was followed by a suppression of inhibitory synaptic potentials.

View Article and Find Full Text PDF

Introduction: The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1).

View Article and Find Full Text PDF

Endocannabinoid release at ventral hippocampal-amygdala synapses regulates stress-induced behavioral adaptation.

Cell Rep

September 2023

Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Electronic address:

The endocannabinoid (eCB) system is a key modulator of glutamate release within limbic neurocircuitry and thus heavily modulates stress responsivity and adaptation. The ventral hippocampus (vHPC)-basolateral amygdala (BLA) circuit has been implicated in the expression of negative affective states following stress exposure and is modulated by retrograde eCB signaling. However, the mechanisms governing eCB release and the causal relationship between vHPC-BLA eCB signaling and stress-induced behavioral adaptations are not known.

View Article and Find Full Text PDF

Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders.

Neuronal Signal

July 2023

Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.

Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases.

View Article and Find Full Text PDF

Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective.

Prog Lipid Res

July 2023

European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio Snc, 67100 L'Aquila, Italy.

Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!