Filling the Gaps to Solve the Extensin Puzzle.

Mol Plant

Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina. Electronic address:

Published: May 2018

Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on contiguous proline residues; then they are O-glycosylated on hydroxyproline and serine. After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases, glycosyltransferases, papain-type cysteine endopeptidases, and peroxidases. EXTs are abundant in plant tissues and are particularly important in rapidly expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs affect fast-growing cells, although the molecular mechanisms underlying this regulation are unknown. In this review, we highlight recent advances in our understanding of EXT modifications throughout the secretory pathway, EXT assembly in cell walls, and possible sensing mechanisms involving the Catharanthus roseus cell surface sensor receptor-like kinases located at the interface between the apoplast and the cytoplasmic side of the plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2018.03.003DOI Listing

Publication Analysis

Top Keywords

cell walls
8
filling gaps
4
gaps solve
4
solve extensin
4
extensin puzzle
4
puzzle extensins
4
exts
4
extensins exts
4
exts highly
4
highly repetitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!