Isopentenyl pyrophosphate (IPP) toxicity presents a challenge in engineered microbial systems since its formation is unavoidable in terpene biosynthesis. In this work, we develop an experimental platform to study IPP toxicity in isoprenol-producing Escherichia coli. We first characterize the physiological response to IPP accumulation, demonstrating that elevated IPP levels are linked to growth inhibition, reduced cell viability, and plasmid instability. We show that IPP toxicity selects for pathway "breakage", using proteomics to identify a reduction in phosphomevalonate kinase (PMK) as a probable recovery mechanism. Next, using multi-omics data, we demonstrate that endogenous E. coli metabolism is globally impacted by IPP accumulation, which slows nutrient uptake, decreases ATP levels, and perturbs nucleotide metabolism. We also observe the extracellular accumulation of IPP and present preliminary evidence that IPP can be transported by E. coli, findings that might be broadly relevant for the study of isoprenoid biosynthesis. Finally, we discover that IPP accumulation leads to the formation of ApppI, a nucleotide analog of IPP that may contribute to observed toxicity phenotypes. This comprehensive assessment of IPP stress suggests potential strategies for the alleviation of prenyl diphosphate toxicity and highlights possible engineering targets for improved IPP flux and high titer isoprenoid production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymben.2018.03.004 | DOI Listing |
Ecotoxicol Environ Saf
December 2024
Department of Biological Sciences, Clemson University, Clemson, SC, USA. Electronic address:
Food Chem
December 2024
Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Hefei, Anhui 230031, PR China. Electronic address:
Environ Pollut
December 2024
REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015, Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal. Electronic address:
In recent years, microplastic (MP) pollution has garnered significant attention owing to its ability to permeate various ecosystems, including soil. These particles can infiltrate the environment, either directly or through the degradation of larger plastic items. Despite growing concerns, standardized methods for quantification are still lacking.
View Article and Find Full Text PDFJ Environ Manage
December 2024
MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Serious attention was lacked for various pollutants formed in both gas and tar phase during pyrolysis recycling of waste wind turbine blades (WWTB), especially for components of carcinogenic bisphenol A (BPA) and potentially toxic polycyclic aromatic hydrocarbons (PAHs) in tar. Pyrolysis temperature within 400-600 °C would significantly impact pollutant formations. Additionally, CO had a potential to mitigate pollutants emission as an economic alternative for N.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China. Electronic address:
As the primary reservoir of heavy metals in nature, soil is highly susceptible to significant co-contamination with Cd-As-Ni. In current study, extracellular polymeric substances (EPS) from Bacillus subtilis were utilized as a novel improver to simultaneously enhance soil property and restrain ecotoxicity in Cd-As-Ni co-contaminated soil. Our findings revealed that EPS effectively bound and immobilized free Cd, As, and Ni in soil and decreased 49.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!