Geographical distribution and phylogenetic analysis of Rhipicephalus sanguineus sensu lato in northern and central Chile.

Ticks Tick Borne Dis

Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Laboratorio de Infectología y Virología Molecular, Red Salud UC, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile. Electronic address:

Published: May 2018

The presented study analyzed the presence and geographical distribution of the tropical and temperate lineages of Rhipicephalus sanguineus sensu lato in Chile. R. sanguineus s.l. ticks were collected from dogs at 14 sites in northern and central Chile for morphological and genetic analysis based on the 16S rDNA gene. Phylogenetic studies proved the existence of both, the tropical and the temperate lineages. The former was represented by a single haplotype and occurred in the far north; the latter included four haplotypes and was observed from the Tarapacá Region southwards. In four sites at latitudes from 20°S to 22°S, both lineages were found to coexist. Our study discovered for the first time the existence of the tropical lineage in Chile and demonstrated that distributions of the tropical and temperate lineages overlap, forming a transitional zone of approximately 200 km in northern coastal Chile.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ttbdis.2018.03.004DOI Listing

Publication Analysis

Top Keywords

tropical temperate
12
temperate lineages
12
geographical distribution
8
rhipicephalus sanguineus
8
sanguineus sensu
8
sensu lato
8
northern central
8
central chile
8
existence tropical
8
chile
5

Similar Publications

Genome-wide development of simple sequence repeat (SSR) markers at 2-Mb intervals in lotus (Nelumbo Adans.).

BMC Genomics

January 2025

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.

Background: Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome.

View Article and Find Full Text PDF

Potential bacterial resources for bioremediation of organochlorine pesticides and flame retardants recognized from forest soil across China.

J Hazard Mater

December 2024

The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China.

Microbe-mediated remediation becomes a desire method for removal of persistent organic pollutants (POPs) due to its eco-friendly and sustainable nature. The improvement of practical feasibility requires constructing comprehensive species pool, while it is still limited by the rapid recognition of potential bacterial resources from environment. Here, based on the relative abundances of bacterial OTUs and pollutant concentrations, we established indexes to assess their tolerance to organochlorine pesticides (OCPs) and flame retardants (FRs) that are atmospheric transported and naturally accumulated in forest soil via forest filter effect.

View Article and Find Full Text PDF

Large diurnal temperature changes (ΔT) (or the diurnal temperature range (DTR)) in surface soils, ranging from 5°C to often greater than 20°C, are generally acknowledged to occur yet largely disregarded in studies that seek to understand how temperature affects microbially-mediated carbon and nitrogen cycling processes. The soil DTR is globally significant at depths of 30 cm or less, occurring from spring through summer in temperate biomes, during summer periods in the arctic, and year-round in the tropics. Thus, although temperature has long been considered an important factor in controlling microbial processes, our understanding of its effects remains incomplete when considering natural soil temperature cycles.

View Article and Find Full Text PDF

Shorebirds Are Shrinking and Shape-Shifting: Declining Body Size and Lengthening Bills in the Past Half-Century.

Ecol Lett

December 2024

Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.

Animals are predicted to shrink and shape-shift as the climate warms, declining in size, while their appendages lengthen. Determining which types of species are undergoing these morphological changes, and why, is critical to understanding species responses to global change, including potential adaptation to climate warming. We examine body size and bill length changes in 25 shorebird species using extensive field data (> 200,000 observations) collected over 46 years (1975-2021) by community scientists.

View Article and Find Full Text PDF

Extraction, characterization, and hemostatic effect of collagen from the scales of Megalonibea fusca.

J Food Sci

December 2024

Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.

Marine collagen is gaining more attraction than terrestrial collagen because it is free of zoonotic disease and religious constrain. In this study, we aimed to investigate and compare the physicochemical properties and functional characteristics of acid-soluble collagen (ASC-MF) and pepsin-soluble collagen (PSC-MF) extracted from scales of Megalonibea fusca. ASC-MF and PSC-MF were evaluated in terms of yield, collagen type, amino acid composition, thermal stability, microstructure, cytotoxicity, and other physicochemical parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!