Sensitivity and selectivity of the solid phase microextraction (SPME) in analysis are mostly determined by the coating material of the fiber used. Graphene oxide (GO) has attracted great attention because of its large specific surface area, rich oxygen functional groups, good dispersibility in aqueous solution and high reactivity. However, the low thermal stability of the functional groups limits the wide application of GO in SPME coating design. Highly cross-linked polyoxyethylene (POE) is a substrate widely used for composite material construction, which could significantly improve the thermal stability, water resistance as well as biocompatibility of the functional materials. In this study, we incorporated GO with highly cross-linked POE as a novel fiber coating material for SPME through the gluing approach. The obtained fiber possessed a wrinkled shape surface, which could increase the accessible surface area. In addition, the thermal and chemical stability of the fiber coating were also improved, rendering the fiber rigid enough for more than 100 repetitive extraction cycles. The performance of this developed SPME method for phenols was evaluated by headspace extraction of phenols in aqueous samples. Compared with three commercial fibers, the home-made fiber showed excellent extraction efficiencies towards phenols. Under the optimized conditions, it showed low detection limits (0.12-1.36 ng· L), good precision (<8.4%), good fiber-to-fiber repeatability (3.1%-8.1%), wide linear range (almost 5-1000 ng·Land correlation coefficients (R) >99%), as well as good enrichment efficiencies (enrichment factors (EFs), 172-1752). Furthermore, the method was successfully applied in simultaneous analyses of five phenols for real water samples with satisfactory recoveries (81-113% for the Pearl River samples).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2018.02.034 | DOI Listing |
J Transl Med
January 2025
Scientia Clinical Research and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
Background: A novel anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugate (ADC) GQ1001 was assessed in patients with previously treated HER2 positive advanced solid tumors in a global multi-center phase Ia dose escalation trial.
Methods: In this phase Ia trial, a modified 3 + 3 study design was adopted during dose escalation phase. Eligible patients were enrolled, and GQ1001 monotherapy was administered intravenously every 3 weeks.
Sci Rep
January 2025
Chengfa Urban Service Technology (Henan) Co., Ltd, Zhengzhou, 450002, People's Republic of China.
In order to study the change rule of freshness and acid ions in reconstituted tobacco slurry, the content changes of 17 organic acids and 5 inorganic anions in reconstituted tobacco slurry with different residence times under confined condition were determined by on-line solid-phase extraction ion chromatography in this study. The results showed that the changes of acetic acid, nitrate ion and isovaleric acid in different reconstituted tobacco slurries with oscillation time were regular and consistent, and the trends of the changes of acetic acid, nitrate ion and isovaleric acid in different reconstituted tobacco slurries with oscillation time were correlated with each other in a highly significant way. Taking the evaluation of olfactory aroma and sensory quality qualities of reconstituted tobacco pulps with different residence times as a benchmark, it was found that the variation patterns of nitrate ions and isovaleric acid in reconstituted tobacco pulps with oscillation time were consistent with the variation patterns of olfactory and sensory qualities in the process of closed oscillation; compared with the fresh pulp, the olfactory aroma and sensory qualities of tobacco pulps had unpleasant odours appearing when the content of nitrate ions was reduced by about 48%.
View Article and Find Full Text PDFSci Rep
January 2025
Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, National Chung Hsing University, Taichung City, 402202, Taiwan, ROC. Electronic address:
Background: To integrate valves, manifolds, and solid-phase extraction (SPE) columns into a compact device is technically difficult. Four-dimensional printing (4DP) technologies, employing stimuli-responsive materials in three-dimensional printing (3DP), are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices that can show time-dependent shape programming to enable more complex geometric designs and functions. However, 4D-printed stimuli-responsive actuators and valves utilized to control flowing streams in SPE applications remain rare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!