https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=29529900&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 295299002018092420181114
1473-23004652018MayThe Journal of international medical researchJ Int Med ResAssociation of low penetrance vitamin D receptor Tru9I (rs757343) gene polymorphism with risk of premenopausal breast cancer.180118141801-181410.1177/0300060518761304Objective The aim of this study was to determine whether a novel polymorphism ( Tru9I) in the low penetrance vitamin D receptor (VDR) gene is associated with risk of premenopausal breast cancer (BC). Methods This case-control study included 228 patients with BC and 503 healthy women living in Pakistan who were analyzed for the VDR Tru9I (rs757343) single nucleotide polymorphism. BC cases were histopathologically confirmed, and all healthy controls were age-matched with patients (age range, 20-45 years). DNA was extracted, and the polymerase chain reaction and restriction fragment length polymorphism assays were performed. Results The VDR Tru9I polymorphism was not significantly associated with premenopausal BC. However, the risk of BC was associated with the 'uu' genotype (odds ratio [OR], 1.141; 95% confidence interval [95% CI], 0.206-6.317). Further, mutant Tru9I was significantly associated with Grade IV carcinoma (OR, 5.36; 95% CI, 1.181-24.338). Conclusion The VDR Tru9I 'uu' genotype may increase the risk of premenopausal BC.IqbalMehir Un NisaMUN1 Department of Physiology, 63596 University of Karachi , Karachi, Pakistan.MaqboolSyed AmirSA2 Department of Clinical Oncology, Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN) hospital, Karachi, Pakistan.KhanTaseer AhmedTA0000-0003-3844-47503 Department of Physiology, 63596 University of Karachi , Karachi, Pakistan.engJournal Article20180312
EnglandJ Int Med Res03464110300-06050Receptors, Calcitriol0VDR protein, humanIMBreast NeoplasmsgeneticspathologyFemaleGene FrequencyGenetic Association StudiesGenetic Predisposition to DiseaseHumansPenetrancePolymorphism, Single NucleotidegeneticsPremenopausegeneticsReceptors, CalcitriolgeneticsRisk FactorsPakistanTru9IVitamin D receptorbreast cancerpremenopausalrs757343
201831460201892560201831460201851ppublish29529900PMC599124110.1177/0300060518761304Shaukat U Ismail M andMehmood N.. Epidemiology, major risk factors and genetic predisposition for breast cancer in the Pakistani population. Asian Pac J Cancer Prev 2013; 14: 5625–5629.24289553Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359–E386. DOI: 10.1002/ijc.29210.25220842Hirko KA, Chen WY, Willett WC, et al. Alcohol consumption and risk of breast cancer by molecular subtype: Prospective analysis of the nurses' health study after 26 years of follow-up. Int J Cancer 2016; 138: 1094–1101. DOI: 10.1002/ijc.29861.PMC471576926384849Nagrani R, Mhatre S, Rajaraman P, et al. Central obesity increases risk of breast cancer irrespective of menopausal and hormonal receptor status in women of South Asian Ethnicity. Eur J Cancer 2016; 66: 153–161. DOI: http://dx.doi.org/10.1016/j.ejca.2016.07.022.10.1016/j.ejca.2016.07.022PMC504019427573429Bassett JK, Hodge AM, English DR, et al. Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer Causes Control 2016; 27: 759–773. DOI: 10.1007/s10552–016-0753–2.27146840Eisman JA andBouillon R.. Vitamin D: direct effects of vitamin D metabolites on bone: lessons from genetically modified mice. BoneKEy Rep 2014; 3: 499. DOI: 10.1038/bonekey.2013.233.PMC394413024605216Bauer SR, Hankinson SE, Bertone-Johnson ER, et al. Plasma vitamin D levels, menopause, and risk of breast cancer: dose-response meta-analysis of prospective studies. Medicine (Baltimore) 2013; 92: 123–131. DOI: 10.1097/MD.0b013e3182943bc2.PMC455398823625163Williams JD, Aggarwal A, Swami S, et al. Tumor autonomous effects of Vitamin D deficiency promote breast cancer metastasis. Endocrinology 2016; 157: 1341–1347. DOI: 10.1210/en.2015–2036.PMC481674226934299Kim Y andJe Y.. Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: a meta-analysis. Br J Cancer 2014; 110: 2772–2784. DOI: 10.1038/bjc.2014.175.PMC403782324714744Kuhn T, Kaaks R, Becker S, et al. Plasma 25-hydroxyvitamin D and the risk of breast cancer in the European prospective investigation into cancer and nutrition: a nested case-control study. Int J Cancer 2013; 133: 1689–1700. DOI: 10.1002/ijc.28172.23526380Lin R andWhite JH.. The pleiotropic actions of vitamin D. BioEssays 2004; 26: 21–28. DOI: 10.1002/bies.10368.14696037Rai V, Abdo J, Agrawal S, et al. Vitamin D Receptor Polymorphism and Cancer: An Update. Anticancer Research 2017; 37:3991–4003. DOI: 10.21873/anticanres.11784. Available at: https://www.ncbi.nlm.nih.gov/pubmed/2873968128739681Deeb KK Trump DL andJohnson CS.. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 2007; 7: 684–700. DOI: 10.1038/nrc2196.17721433Pendas-Franco N, Gonzalez-Sancho JM, Suarez Y, et al. Vitamin D regulates the phenotype of human breast cancer cells. Differentiation 2007; 75: 193–207. DOI: 10.1111/j.1432-0436.2006.00131.x.17288543Lopes N, Carvalho J, Duraes C, et al. 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Res 2012; 32: 249–257.22213313Campbell MJ, Gombart AF, Kwok SH, et al. The anti-proliferative effects of 1alpha,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Oncogene 2000; 19: 5091–5097. DOI: 10.1038/sj.onc.1203888.11042697Lopes N, Sousa B, Martins D, et al. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer 2010; 10: 483. DOI: 10.1186/1471–2407-10–483.PMC294594420831823Bertoccini L, Sentinelli F, Leonetti F, et al. The vitamin D receptor functional variant rs2228570 (C>T) does not associate with type 2 diabetes mellitus. Endocr Res 2017; 42: 1–5. DOI: 10.1080/07435800.2017.1305965.28388281Torkko KC, van Bokhoven A, Mai P, et al. VDR and SRD5A2 polymorphisms combine to increase risk for prostate cancer in both non-Hispanic White and Hispanic White men. Clin Cancer Res 2008; 14: 3223–3229. DOI: 10.1158/1078–0432.ccr-07–4894.18483391Hashemi SM, Arbabi N, Hashemi M, et al. Association between VDR Gene Polymorphisms (rs 1544410, rs 7975232, rs 2228570, rs 731236 and rs 11568820) and Susceptibility to Breast Cancer in a Sample of Southeastern Iranian Population. Int J Cancer Manag 2017; 10: e8807.Atoum MF andAl-Khatib YM.. Association between Serum 25-hydroxy Vitamin D Concentration and TaqI Vitamin D Receptor Gene Polymorphism among Jordanian females with breast cancer. Chin Med J (Engl) 2017; 130: 1074–1078. DOI: 10.4103/0366–6999.204933.PMC542117828469103Talaneh S, Ghorbani A, Oghabi Bakhshaiesh T, et al. FokI and BsmI Polymorphisms of the VDR Gene and Breast Cancer Risk. MCI 2017; 1: 21–25.Elzehery RR, Baiomy AA, Hegazy MAF, et al. Vitamin D status, receptor gene BsmI (A/G) polymorphism and breast cancer in a group of Egyptian females. Egyptian Journal of Medical Human Genetics 2017; 18: 269–273. DOI: https://doi.org/10.1016/j.ejmhg.2016.11.003.10.1016/j.ejmhg.2016.11.003Lu D Jing L andZhang S.. Vitamin D Receptor Polymorphism and Breast Cancer Risk: A Meta-Analysis. Medicine 2016; 95: e3535. DOI: 10.1097/md.0000000000003535.PMC486377427149457Rashid MU, Muzaffar M, Khan FA, et al. Association between the BsmI Polymorphism in the Vitamin D Receptor Gene and Breast Cancer Risk: Results from a Pakistani Case-Control Study. PloS One 2015; 10: e0141562. DOI: 10.1371/journal.pone.0141562.PMC462764926517870Gong YL, Xie DW, Deng ZL, et al. Vitamin D receptor gene Tru9I polymorphism and risk for incidental sporadic colorectal adenomas. World J Gastroenterol 2005; 11: 4794–4799.PMC439872416097046Sarwar MR andSaqib A.. Cancer prevalence, incidence and mortality rates in Pakistan in 2012. Cogent Medicine 2017; 4: 1288773. DOI: 10.1080/2331205X.2017.1288773.Wu H, Chen Y, Liang J, et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 2005; 438: 981–987. DOI: doi:10.1038/nature0422516355216Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007; 57: 75–89.17392385Peterlongo P, Chang-Claude J, Moysich KB, et al. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 2015; 24: 308–316. DOI: 10.1158/1055–9965.epi-14–0532.PMC429495125336561Desrichard A, Bidet Y, Uhrhammer N, et al. CHEK2 contribution to hereditary breast cancer in non-BRCA families. Breast Cancer Res 2011; 13: R119. DOI: 10.1186/bcr3062.PMC332656122114986Krishnan AV andFeldman D.. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol 2011; 51: 311–336. DOI: 10.1146/annurev-pharmtox-010510–100611.20936945Guo B, Jiang X, Hu X, et al. Association between vitamin D receptor gene polymorphisms and breast cancer in a Chinese population. Int J Clin Exp Med 2015; 8: 8020–8024.PMC450931026221365Reimers LL, Crew KD, Bradshaw PT, et al. Vitamin D-related gene polymorphisms, plasma 25-hydroxyvitamin D, and breast cancer risk. Cancer Causes Control 2015; 26: 187–203. DOI: 10.1007/s10552–014-0497–9.PMC430204225421379Engel LS, Orlow I, Sima CS, et al. Vitamin D receptor gene haplotypes and polymorphisms and risk of breast cancer: a nested case-control study. Cancer Epidemiol Biomarkers Prev 2012; 21: 1856–1867. DOI: 10.1158/1055–9965.epi-12–0551.PMC348302922892281Mishra DK, Wu Y, Sarkissyan M, et al. Vitamin D receptor gene polymorphisms and prognosis of breast cancer among African-American and Hispanic women. PloS One 2013; 8: e57967. DOI: 10.1371/journal.pone.0057967.PMC359523523554871Nemenqani DM, Karam RA, Amer MG, et al. Vitamin D receptor gene polymorphisms and steroid receptor status among Saudi women with breast cancer. Gene 2015; 558: 215–219. DOI: 10.1016/j.gene.2014.12.065.25560187Ye WZ Reis AF andVelho G.. Identification of a novel Tru9 I polymorphism in the human vitamin D receptor gene. J Hum Genet 2000; 45: 56–57. DOI: 10.1007/s100380050011.10697965He L andWang M.. Association of vitamin d receptor-a gene polymorphisms with coronary heart disease in Han Chinese. Int J Clin Exp Med 2015; 8: 6224–6229.PMC448400926131229Bai Y, Yu Y, Yu B, et al. Association of vitamin D receptor polymorphisms with the risk of prostate cancer in the Han population of Southern China. BMC Med Gen 2009; 10: 125–125. DOI: 10.1186/1471–2350-10–125.PMC279666019961572