Absorbance modulation enables lateral superresolution in optical lithography and transmission microscopy by generating a dynamic aperture within a photochromic absorbance-modulation layer (AML) coated on a substrate or a specimen. The applicability of this concept to reflection microscopy has not been addressed so far, although reflection imaging exhibits the important ability to image a wide range of samples, transparent or opaque, dielectric or metallic. In this paper, a simulation model for absorbance-modulation imaging (AMI) in confocal reflection microscopy is presented and it is shown that imaging well beyond the diffraction limit is feasible. In addition, we derive analytical design equations and estimate the dependence of the achievable resolution and pixel dwell time on relevant parameters, such as the AML properties and the applied light powers. We prove the validity of these equations through a comparison with the simulation results and we show that a resolution enhancement down to 1/5 of the diffraction limit is possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.005327 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand.
Direct thrombin inhibitors (designated as EuRL-DTIs) were partially purified from ethanol extracts of Euphorbia resinifera O.Berg latex. The obtained EuRL-DTIs comprised four major compounds: two isomers of phenolic compounds (CHO) and two amide compounds (tentatively identified as CHNO and CHNO), as identified by liquid chromatography and electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and/or nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFInt J Biomater
January 2025
Iranian Center for Endodontic Research, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, 91058 Erlangen, Germany.
Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).
View Article and Find Full Text PDFIn this study, we demonstrated an inspection system utilizing reflection phase microscopy to enhance both depth range and field of view (FOV). By implementing a dual-wavelength method, we achieved a maximum expected depth range of 7.7 µm.
View Article and Find Full Text PDFThe coupling effect of gamma-ray radiation and 532 nm nanosecond laser radiation on optical coatings and substrates was investigated. Fused silica and S-BSL7 glass with 532 nm high reflectivity (HR) coatings were irradiated using Co gamma-ray source at a dose rate of 1 Gy/s for a total dose of 1-500 kGy. After irradiation, the samples were subjected to raster scan testing using a laser with a pulse width of approximately 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!