Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

Chemosphere

Centre for Oil and Gas Research and Development (COGRAD), Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada. Electronic address:

Published: June 2018

The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A). Uptake rates increased markedly for PAHs with molecular volumes between 130 A and 190 A. Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.03.033DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
8
aromatic hydrocarbons
8
organic phase
8
absorption pahs
8
pahs beads
8
molecular volume
8
pahs
7
beads
5
absorption
4
absorption polycyclic
4

Similar Publications

Retraction notice to "Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review" [Chemosphere 328 (2023) 138498].

Chemosphere

December 2024

School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India.

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are an organic chemical family produced during incomplete combustion of organic materials. Besides, PAHs are associated with different detrimental health effects. Therefore, this research was aimed to assess the association between PAHs exposure, metabolic syndrome (MetS) prevalence, and cardiovascular risk in a Mexican population.

View Article and Find Full Text PDF

Background: The highly industrialized areas characterize the delta coasts of the world, due to the discharging of large quantity of wastewater into the river estuaries. The entrance of phenolic compounds and PAHs into the aquatic environment has not been sufficiently studied on the Egyptian Mediterranean coast. The article examines the content and ecological risks associated with 11 phenolic compounds and 14 PAHs in the bottom sediments of the Nile River estuaries, the largest river systems that discharged into the Mediterranean Sea.

View Article and Find Full Text PDF

Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQ), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran.

View Article and Find Full Text PDF

Phenanthrene degradation by strain Sneb1168 isolated from Reynosa, Mexico.

J Environ Sci Health B

December 2024

Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico.

Phenanthrene is classified as a priority environmental pollutant because of its impact on the environment and on human health as a mutagenic and carcinogenic agent. The aim of this study was isolated and identified new bacteria with the capability to degrade phenanthrene from Reynosa, Mexico. , , and had high tolerant to phenanthrene (250 mg L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!