Assessment of particulate matter and ammonia emission concentrations and respective plume profiles from a commercial poultry house.

Environ Pollut

US Department of Agriculture, Agricultural Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville, MD, 20705, USA. Electronic address:

Published: July 2018

Poultry-emitted air pollutants, including particulate matter (PM) and ammonia, have raised concerns due to potential negative effects on human health and the environment. However, developing and optimizing remediation technologies requires a better understanding of air pollutant concentrations, the emission plumes, and the relationships between the pollutants. Therefore, we conducted ten field experiments to characterize PM (total suspended particulate [TSP], particulate matter less than 10 μm in aerodynamic diameter [PM], and particulate matter less than 2.5 μm in aerodynamic diameter [PM]) and ammonia emission-concentration profiles from a typical commercial poultry house. The emission factors of the poultry house, which were calculated using the concentrations and fan speed, were 0.66 (0.29-0.99) g NH-N birdd for ammonia, 52 (44-168) g dAU (AU = animal unit = 500 kg) for TSP, 3.48 (1.16-9.03) g dAU for PM, and 0.07 (0.00-0.36) g dAU for PM. PM and ammonia emission concentrations decreased as distance from the fan increased. Although emission concentrations were similar in the daytime and nighttime, diurnal and nocturnal plume shapes were different due to the increased stability of the atmosphere at night. Particle size distribution analysis revealed that, at a given height, the percentage of PM and PM was consistent throughout the plume, indicating that the larger particles were not settling out of the airstream faster than the smaller particles. Overall, the direction of the measured air pollutant emission plumes was dominated by the tunnel fan ventilation airflow rate and direction instead of the ambient wind speed and direction. This is important because currently-available air dispersion models use ambient or modeled wind speed and direction as input parameters. Thus, results will be useful in evaluating dispersion models for ground-level, horizontally-released, point sources and in developing effective pollutant remediation strategies for emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2018.02.039DOI Listing

Publication Analysis

Top Keywords

particulate matter
16
emission concentrations
12
poultry house
12
matter ammonia
8
ammonia emission
8
commercial poultry
8
air pollutant
8
emission plumes
8
aerodynamic diameter
8
diameter [pm]
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!