Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat, and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of developing a genetically tractable system within which NHR segregates. Here, we demonstrate that Pg's far less studied ancestral host, barberry (Berberis spp.), provides such a unique pathosystem. Characterization of a natural population of B. ×ottawensis, an interspecific hybrid of Pg-susceptible B. vulgaris and Pg-resistant B. thunbergii (Bt), reveals that this uncommon nothospecies can be used to dissect the genetic mechanism(s) of Pg-NHR exhibited by Bt. Artificial inoculation of a natural population of B. ×ottawensis accessions, verified via genotyping by sequencing to be first-generation hybrids, revealed 51% susceptible, 33% resistant, and 16% intermediate phenotypes. Characterization of a B. ×ottawensis full sib family excluded the possibility of maternal inheritance of the resistance. By demonstrating segregation of Pg-NHR in a hybrid population, this study challenges the assumed irrelevance of Bt to Pg epidemiology and lays a novel foundation for the genetic dissection of NHR to one of agriculture's most studied pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920301 | PMC |
http://dx.doi.org/10.1093/jxb/ery066 | DOI Listing |
Animal
December 2024
Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy. Electronic address:
Metabolomics can describe the molecular phenome and may contribute to dissecting the biological processes linked to economically relevant traits in livestock species. Comparative analyses of metabolomic profiles in purebred pigs can provide insights into the basic biological mechanisms that may explain differences in production performances. Following this concept, this study was designed to compare, on a large scale, the plasma metabolomic profiles of two Italian heavy pig breeds (Italian Duroc and Italian Large White) to indirectly evaluate the impact of their different genetic backgrounds on the breed metabolomes.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.
Methods And Results: In this study, we employed a discovery-driven, unbiased approach.
Semin Cell Dev Biol
December 2024
Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France. Electronic address:
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
The biochemical makeup of any organism provides insight into key factors regarding its biological functions. These factors can be explored using proteomics, which allows us to obtain a snapshot of the protein content and abundance in an organism, cell type or sub-cellular compartment. Here, we describe proteomic methodologies that can be used to dissect the biochemical mechanism of phytopathogenicity in oomycetes.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
Transcriptional regulation allows cells to execute developmental programs, maintain homeostasis, and respond to intra- and extracellular signals. Central to these processes are promoters, which in eukaryotes are sequences upstream of genes that bind transcription factors (TFs) and which recruit RNA polymerase to initiate mRNA synthesis. Valuable tools for studying promoters include reporter genes, which can be used to indicate when and where genes are activated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!