In this work, we fabricate the MoWS by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using MoWS polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm. The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using MoWS SAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aab5f2 | DOI Listing |
We report a hyperspectral Raman imaging lidar system that can remotely detect and identify typical plastic species. The system is based on a frequency-doubled, Q-switched Nd:YAG laser operating at 532 nm and an imaging spectrograph equipped with a gated intensified CCD spectrometer. Stand-off detection of plastics is achieved at 6 m away with a relatively wide field of view of 1 × 150 mm, thus providing the groundwork for better solutions in monitoring marine plastic pollution.
View Article and Find Full Text PDFNanophotonics
January 2024
School of Physics, Xidian University, Xi'An 710071, P.R. China.
In this paper, we report the use of femtosecond radially polarized vortex laser with MHz repetition rate for direct writing of cladding waveguides (WGs) and realization of waveguide laser oscillations in ytterbium-doped calcium fluoride crystal. The negative refractive index modification in Yb:CaF crystal is fabricated by the homemade all-fiber laser amplifier. At 976 nm pump wavelength, these Yb:CaF WGs can achieve continuous-wave (CW) laser oscillation.
View Article and Find Full Text PDFNanophotonics
May 2024
Shandong Engineering Research Center of New Optoelectronic Information Technology and Devices, School of Mathematics and Physics, Qingdao University of Science & Technology, Qingdao 266061, China.
We report on the laser performance of Nd,Sc:YAG (yttrium aluminum garnet), for the first time, to our knowledge. In this study, 10 at.% Sc ions were doped into the Nd:YAG crystal to form the Nd,Sc:YAG crystal, which improves the saturation flux while nearly maintaining the excellent properties of the Nd:YAG crystal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!