The purpose of this review is to survey the antiparasitic plants of the Asteraceae family and their applicability in the treatment of parasites. This review is divided into three major parts: (a) literature on traditional uses of Asteraceae plants for the treatment of parasites; (b) description of the major classes of chemical compounds from Asteraceae and their antiparasitic effects; and (c) antiparasitic activity with special reference to flavonoids and terpenoids. This review provides detailed information on the reported Asteraceae plant extracts found throughout the world and on isolated secondary metabolites that can inhibit protozoan parasites such as Plasmodium, Trypanosoma, Leishmania, and intestinal worms. Additionally, special attention is given to the Asteraceae plants of Odisha, used by the tribes of the area as antiparasitics. These plants are compared to the same plants used traditionally in other regions. Finally, we provide information on which plants identified in Odisha, India and related compounds show promise for the development of new drugs against parasitic diseases. For most of the plants discussed in this review, the active compounds still need to be isolated and tested further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847338PMC
http://dx.doi.org/10.1051/parasite/2018008DOI Listing

Publication Analysis

Top Keywords

antiparasitic activity
8
special attention
8
odisha india
8
treatment parasites
8
asteraceae plants
8
plants
7
asteraceae
6
antiparasitic
4
activity asteraceae
4
asteraceae special
4

Similar Publications

Antifungal activity of essential oils and their potential synergistic effect with amphotericin B.

Sci Rep

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Candida albicans is a common opportunistic pathogen, causing infections ranging from superficial to bloodstream infections. The limited antifungal options and rising drug resistance challenge clinical treatment. We screened 98 essential oils and identified 48 with antifungal activity against Candida albicans at 1% concentration, determining their minimum inhibitory concentrations (MIC).

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Viruses are dependent on cellular energy metabolism for their replication, and the drug nitazoxanide (Alinia) was shown to interfere with both processes. Nitazoxanide is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Our hypothesis was that mitochondrial uncoupling underlies the antiviral effects of nitazoxanide.

View Article and Find Full Text PDF

Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival.

Invest Ophthalmol Vis Sci

December 2024

The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.

View Article and Find Full Text PDF

Introduction: Malaria caused by spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!