Liver Iron Quantification with MR Imaging: A Primer for Radiologists.

Radiographics

From the Department of Radiology (R.L., G.G., M.C., K.N.V., D.O., J.S.B., A.T.) and Service of Hemato-oncology, Department of Medicine (D.S.), Centre Hospitalier de l'Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; MR Clinical Science, Philips Healthcare Canada, Markham, ON, Canada (G.G.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada (A.T.).

Published: August 2018

Iron overload is a systemic disorder and is either primary (genetic) or secondary (exogenous iron administration). Primary iron overload is most commonly associated with hereditary hemochromatosis and secondary iron overload with ineffective erythropoiesis (predominantly caused by β-thalassemia major and sickle cell disease) that requires long-term transfusion therapy, leading to transfusional hemosiderosis. Iron overload may lead to liver cirrhosis and hepatocellular carcinoma, in addition to cardiac and endocrine complications. The liver is one of the main iron storage organs and the first to show iron overload. Therefore, detection and quantification of liver iron overload are critical to initiate treatment and prevent complications. Liver biopsy was the historical reference standard for detection and quantification of liver iron content. Magnetic resonance (MR) imaging is now commonly used for liver iron quantification, including assessment of distribution, detection, grading, and monitoring of treatment response in iron overload. Several MR imaging techniques have been developed for iron quantification, each with advantages and limitations. The liver-to-muscle signal intensity ratio technique is simple and widely available; however, it assumes that the reference tissue is normal. Transverse magnetization (also known as R2) relaxometry is validated but is prone to respiratory motion artifacts due to a long acquisition time, is presently available only for 1.5-T imaging, and requires additional cost and delay for off-line analysis. The R2* technique has fast acquisition time, demonstrates a wide range of liver iron content, and is available for 1.5-T and 3.0-T imaging but requires additional postprocessing software. Quantitative susceptibility mapping has the highest sensitivity for detecting iron deposition; however, it is still investigational, and the correlation with liver iron content is not yet established. RSNA, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.2018170079DOI Listing

Publication Analysis

Top Keywords

iron overload
28
liver iron
24
iron
15
iron quantification
12
iron content
12
liver
9
complications liver
8
detection quantification
8
quantification liver
8
acquisition time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!