A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomechanical Evaluation of Circumtibial and Transmembranous Routes for Posterior Tibial Tendon Transfer for Dropfoot. | LitMetric

Biomechanical Evaluation of Circumtibial and Transmembranous Routes for Posterior Tibial Tendon Transfer for Dropfoot.

Foot Ankle Int

3 Laboratorio LIBFE, Escuela de Kinesiología, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.

Published: July 2018

Background: Tibialis posterior tendon transfer is performed when loss of dorsiflexion has to be compensated. We evaluated the circumtibial (CT), above-retinaculum transmembranous (TMAR), and under-retinaculum transmembranous (TMUR) transfer gliding resistance and foot kinematics in a cadaveric foot model during ankle range of motion (ROM).

Methods: Eight cadaveric foot-ankle distal tibia specimens were dissected free of soft tissues on the proximal end, applying an equivalent force to 50% of the stance phase to every tendon, except for the Achilles tendon. Dorsiflexion was tested with all of the tibialis posterior tendon transfer methods (CT, TMAR, and TMUR) using a tension tensile machine. A 10-repetition cycle of dorsiflexion and plantarflexion was performed for each transfer. Foot motion and the force needed to achieve dorsiflexion were recorded.

Results: The CT transfer showed the highest gliding resistance ( P < .01). Regarding kinematics, all transfers decreased ankle ROM, with the CT transfer being the condition with less dorsiflexion compared with the control group (6.8 vs 15 degrees, P < .05). TMUR transfer did perform better than TMAR with regard to ankle dorsiflexion, but no difference was shown in gliding resistance. The CT produced a supination moment on the forefoot.

Conclusion: The CT transfer had the highest tendon gliding resistance, achieved less dorsiflexion and had a supination moment. Clinical Relevance We suggest that the transmembranous tibialis posterior tendon transfer should be the transfer of choice. The potential bowstringing effect when performing a tibialis posterior tendon transfer subcutaneously (TMAR) could be avoided if the transfer is routed under the retinaculum, without significant compromise of the final function and even with a possible better ankle range of motion.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1071100718760845DOI Listing

Publication Analysis

Top Keywords

tendon transfer
20
tibialis posterior
16
posterior tendon
16
gliding resistance
16
transfer
13
tendon
8
tmur transfer
8
ankle range
8
range motion
8
transfer highest
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!