Classical chemical dynamics simulation results are presented for the thermal desorption kinetics and energetics of protonated dialanine ions (ala-H) physisorbed on/in a perfluorinated self-assembled monolayer (F-SAM) surface. Previously developed analytic potentials were used for the F-SAM and the ala-H/F-SAM intermolecular interaction, and the AMBER valence force field was used for ala-H. The activation energy, E = 13.2 kcal/mol, determined from the simulations is consistent with previous simulations of the ala-H/F-SAM binding energy. The A-factor, 7.8 × 10 s, is about an order of magnitude lower than those representative of small molecule desorption from metal and semiconductor surfaces. This finding is consistent with the decreased entropies of ala-H and the F-SAM upon desorption. Using the Arrhenius parameters for ala-H desorption from the F-SAM, the lifetime of ala-H adsorbed on the F-SAM at 300 K is 5 × 10 s. Larger peptide ions are expected to have longer adsorption lifetimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b00390 | DOI Listing |
J Phys Chem A
January 2025
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
The quantum transition state framework was developed to calculate the reaction path-resolved scattering matrix for atom-diatom reactions in hyperspherical (APH) coordinates. This approach allows for simply and directly calculating the reaction path-resolved scattering matrix, especially when the encircling reaction path is negligible. It could be used to determine the reactivities of specific pathways in a chemical reaction, providing insights into phenomena such as geometric phase effects.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.
A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Earth Science, University of Bizerte-FSB, University of Carthage, 7120, Bizerte, Tunisia.
The Ichkeul-Bizerte Lagoon Complex (IBLC), a critical ecosystem for local biodiversity, faces a pressing threat due to climate change and severe pollution. Despite past conservation efforts, pollution persists, particularly in the Bizerte Lagoon. This study investigated the impact of water dynamics and climatic conditions on heavy metal contamination in the IBLC's sediments.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
In polymerization-induced phase separation, the impact of polymer-substrate interaction on the dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials as the surface can act as another driving force for phase separation other than polymerization. We modify the previously-developed polymerizing Cahn-Hilliard (pCH) method by adding a surface potential to model the phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization in the presence of a surface. In our approach, we explicitly model polydispersity by separately considering different molecular-weight components with their own respective diffusion constants, and with the surface potential preferentially acting on only one species.
View Article and Find Full Text PDFNanoscale
January 2025
School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.
Serum albumin has myriad uses in biotechnology, but its value as a nanocarrier or nanoplatform for therapeutics is becoming increasingly important, notably with albumin-bound chemotherapeutics. Another emerging field is the fabrication of biopolymeric nanoparticles using albumin as a building block to achieve highly-tunable nonimmunogenic capsules or scaffolds that may be cheaply and reliably produced. The aim of this study was to characterize and optimize the desolvation process used for fabrication of albumin nanoparticles under ambient conditions, studying both glutaraldehyde (GT) and glucose (GLU) as crosslinking agents and the effect of various synthesis conditions including pH, electrolyte concentration, and rate of desolvation on particle size and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!