Supercritical Angle Fluorescence Characterization Using Spatially Resolved Fourier Plane Spectroscopy.

Anal Chem

KU Leuven , Laboratory of Solid-State Physics and Magnetism , Celestijnenlaan 200D , B-3001 Leuven , Belgium.

Published: April 2018

Most fluorescent immunoassays require a wash step prior to read-out due to the otherwise overwhelming signal of the large number of unbound (bulk) fluorescent molecules that dominate over the signal from the molecules of interest, usually bound to a substrate. Supercritical angle fluorescence (SAF) sensing is one of the most promising alternatives to total internal reflection fluorescence for fluorescence imaging and sensing. However, detailed experimental investigation of the influence of collection angle on the SAF surface sensitivity, i.e., signal to background ratio (SBR), is still lacking. In this Letter, we present a novel technique that allows to discriminate the emission patterns of free and bound fluorophores simultaneously by collecting both angular and spectral information. The spectrum was probed at multiple positions in the back focal plane using a multimode fiber connected to a spectrometer and the difference in intensity between two fluorophores was used to calculate the SBR. Our study clearly reveals that increasing the angle of SAF collection enhances the surface sensitivity, albeit at the cost of decreased signal intensity. Furthermore, our findings are fully supported by full-field 3D simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b04822DOI Listing

Publication Analysis

Top Keywords

supercritical angle
8
angle fluorescence
8
angle saf
8
surface sensitivity
8
fluorescence
4
fluorescence characterization
4
characterization spatially
4
spatially resolved
4
resolved fourier
4
fourier plane
4

Similar Publications

Sulfate Promotes Compact CaCO Formation and Protects Portland Cement from Supercritical CO Attack.

Environ Sci Technol

January 2025

Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Supercritical (sc) CO in geologic carbon sequestration (GCS) can chemically and mechanically deteriorate wellbore cement, raising concerns for long-term operations. In contrast to the conventional view of "sulfate attack" on cement, we found that adding 0.15 M sulfate to the acidic brine can significantly reduce the impact of scCO attack on Portland cement, resulting in stronger cement than that found in a sulfate-free system.

View Article and Find Full Text PDF

In this study, activated halloysite nanotube (HNT) and phenyltriethoxysilane (PTES) were utilized for the first time to fabricate modified HNT materials and coat them onto melamine sponge (MS) substrate in the supercritical carbon dioxide (scCO) atmosphere. The successful coating of MS substrate was confirmed using SEM, EDS, XPS, and contact angle measurements. The drainage technique applied in the CO medium achieved the uniform coating of both the inner and outer surfaces of the MS.

View Article and Find Full Text PDF

Pressurized high-temperature water attracts attention as a promising medium for chemical synthesis, biomass processing or destruction of hazardous waste. Adjustment to the desired solvent properties requires knowledge on the behavior of populations of hydrogen-bonded molecules. In this work, the interconnection between the hydrogen bond (HB) dynamics and the structural rearrangements of HB networks have been studied by molecular dynamics simulation using the modified central force flexible potential and the HB definition controlling pair interaction energy, HB length and HB angle.

View Article and Find Full Text PDF

In this paper, structure-properties relationship between ionically crosslinked pectin hydrogels and aerogels is drawn, by focusing the study on the small amount of added cationic crosslinkers. Through this strategy and by coupling results from rheology and nanostructure of the gels provided by small-angle X-ray scattering, the early stages of the formation of ionic crosslinking junction zones are observed. Furthermore, as a major predictor of the samples' ability to resist linear shrinkage upon solvent exchange and supercritical drying processes, the gel-state (and thus rheological properties) emerges as a key element.

View Article and Find Full Text PDF

Amyloid β aggregation is an important factor in Alzheimer's disease. Since calcium homeostasis plays an important role in amyloid β aggregation, it is crucial to study the interaction between calcium ions and amyloid β directly at the surface of the lipid membrane. With supercritical angle techniques, the signal of interest at the surface is easily separated from the bulk solution, making them a powerful tool for aggregation study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!