Transcranial Direct Current Stimulation (tDCS) is a cheap, easy to use, and relatively safe noninvasive brain stimulation technique. It is increasingly used in several indications in psychiatry and neurology, mainly for depression, chronic pain and cognitive decline due to degenerative brain diseases. Its efficacy is probable in depression and must still be confirmed in numerous other indications. Lowcost devices for the general public are easy to find on the internet and are frequently used for non-therapeutic indications, like the improvement of video gamers' performances. A non-medical use could represent a public health hazard, due to lack of control on stimulation parameters i.e. localization, duration and intensity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.30637/2018.17-106 | DOI Listing |
Prostate
January 2025
Department of Urology, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey.
Background: Metastatic castration resistance prostate cancer (mCRPC) is a challenging disease with a significant burden of mortality and morbidity. Most of the patients attain resistance to the available treatments, necessitating further novel therapies in this clinical setting. Actinium 225 (Ac) prostate-specific membrane antigen (PSMA) radioligand therapy has emerged as a promising option and has been utilized for the last decade.
View Article and Find Full Text PDFBiotechnol J
January 2025
Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China.
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.
View Article and Find Full Text PDFPrenat Diagn
January 2025
Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Prenatal cell-free DNA (cfDNA) screening has advanced significantly, extending beyond detecting aneuploidies to sub-chromosomal copy number variations. However, its application for screening dominant single-gene conditions, often caused by de novo variants, remains underutilized in the general obstetric population. This study reviews recent data and experience on prenatal cfDNA screening for dominant monogenic conditions using multiple-gene panels, highlighting its potential to enhance early detection and management of genetic disorders.
View Article and Find Full Text PDFOphthalmic Physiol Opt
January 2025
Vision and Hearing Sciences Research Centre, Anglia Ruskin University, Cambridge, UK.
Purpose: Wearable electronic low vision enhancement systems (wEVES) improve visual function but are not widely adopted by people with vision impairment. Here, qualitative research methods were used to investigate the usefulness of wEVES for people with age-related macular degeneration (AMD) after an extended home trial.
Methods: Following a 12-week non-masked randomised crossover trial, semi-structured interviews were completed with 34 participants with AMD, 64.
Transl Neurodegener
January 2025
Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.
Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!