The glass transition of supported polystyrene (PS) and poly(2-vinylpyridine) (P2VP) thin films in the vicinity of the substrate interface was studied by using a nanoplasmonic sensing (NPS) method. This "nanocalorimetric" approach utilizes localized surface plasmon resonance from two-dimensional arrangements of sensor nanoparticles deposited on SiO-coated glass substrates. The NPS results demonstrated the existence of a high glass transition temperature ( T) along with the bulk glass transition temperature ( T ≈ 100 °C for PS and P2VP) within the thin films: T ≈ 160 °C for PS and T ≈ 200 °C for P2VP. To understand the origin of the T, we also studied the thermal transitions of lone polymer chains strongly adsorbed onto the substrate surface using solvent rinsing. Interestingly, the NPS data indicated that the T is attributed to the adsorbed polymer chains. To provide a better understanding of the mechanism of the T, molecular dynamics simulations were performed on a PS film adsorbed on hydrophobic and hydrophilic substrates. The simulation results illuminated the presence of a higher density region closest to the substrate surface regardless of the magnitude of the polymer-solid interactions. We postulate that the highly packed chain conformation reduces the free volume at the substrate interface, resulting in the T. Moreover, the simulation results revealed that the deviation of the T from the bulk T becomes larger as the polymer-substrate interaction increases, which is in line with the experimental findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b00122 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.
With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).
View Article and Find Full Text PDFSAR QSAR Environ Res
January 2025
Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
A scheme for constructing models of the 'structure-glass transition temperature of a polymer' is proposed. It involves the representation of the molecular structure of a polymer through the architecture of monomer units represented through a simplified molecular input-line entry system (SMILES) and the fragments of local symmetry (FLS). The statistical quality of such models is quite good: the determination coefficient values for active training set, passive training set, calibration set, and validation set are 0.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Faculty of Information Technology, University of Jyväskylä, Jyvaskyla, Finland.
The design of photobioreactors for microalgae cultivation aims to achieve an architecture that allows the most efficient photosynthetic growth. The availability of light at wavelengths that are important for photosynthesis is therefore particularly crucial for reactor design. While testing different reactor types in practice is expensive, simulations could effectively limit the range of material and reactor design options.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Centre for Computational Science, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
For the computational design of new polymeric materials, accurate methods for determining the glass transition temperature () are required. We apply an ensemble approach in molecular dynamics (MD) and examine its predictions of and their associated uncertainty. We separate the uncertainty into the aleatoric contributions arising from dynamical chaos and that due to the computational scenarios chosen to compute .
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. Electronic address:
Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!