In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex HFeRu(CO) covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo(CO), metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of HFeRu(CO) demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8-9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO) from HFeRu(CO) upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of HFeRu(CO) as compared to the structurally similar HFeCo(CO).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827713 | PMC |
http://dx.doi.org/10.3762/bjnano.9.53 | DOI Listing |
Acc Chem Res
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.
Incorporation of environment and vibronic effects in simulations of optical spectra and excited state dynamics is commonly done by combining molecular dynamics with excited state calculations, which allows to estimate the spectral density describing the frequency-dependent system-bath coupling strength. The need for efficient sampling, however, usually leads to the adoption of classical force fields despite well-known inaccuracies due to the mismatch with the excited state method. Here, we present a multiscale strategy that overcomes this limitation by combining EMLE simulations based on electrostatically embedded ML potentials with the QM/MMPol polarizable embedding model to compute the excited states and spectral density of 3-methyl-indole, the chromophoric moiety of tryptophan that mediates a variety of important biological functions, in the gas phase, in water solution, and in the human serum albumin protein.
View Article and Find Full Text PDFJ Mol Model
January 2025
Departamento de Investigación y Desarrollo, ConsultoresAcademicos SpA, Moneda 1137, 8340457, Santiago, Chile.
Context: This study meticulously examines the criteria for assigning electron rearrangements along the intrinsic reaction coordinate (IRC) leading to bond formation and breaking processes during the pyrolytic isomerization of cubane (CUB) to 1,3,5,7-cyclooctatetraene (COT) from both thermochemical and bonding perspectives. Notably, no cusp-type function was detected in the initial thermal conversion step of CUB to bicyclo[4.2.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Unlabelled: Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria.
Peptide bond formation from the pure protonated glycine dimer, H(Gly), and from the mixed protonated glycine-diglycine dimer, HGly(Gly), was recently found experimentally to occur in gas-phase experiments in the absence of any catalyst and especially under anhydrous conditions [, 2023, , 775]. In this contribution we further examine the conditions of such unimolecular reactions by means of density-functional theory calculations at the DFT/M06 2X/6-311G++(2df,p) level, focusing in particular on the role played by the protonation site. Two pathways, stepwise and concerted, are identified for the pure protonated dimer, and six pathways are examined for the mixed dimer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!