Oxygen demand in river substrates providing important habitats for the early life stages of aquatic ecology, including lithophilous fish, can arise due to the oxidation of sediment-associated organic matter. Oxygen depletion associated with this component of river biogeochemical cycling, will, in part, depend on the sources of such material. A reconnaissance survey was therefore undertaken to assess the relative contributions from bed sediment-associated organic matter sources potentially impacting on the River Axe Special Area of Conservation (SAC), in SW England. Source fingerprinting, including Monte Carlo uncertainty analysis, suggested that the relative frequency-weighted average median source contributions ranged between 19% (uncertainty range 0-82%) and 64% (uncertainty range 0-99%) for farmyard manures or slurries, 4% (uncertainty range 0-49%) and 35% (uncertainty range 0-100%) for damaged road verges, 2% (uncertainty range 0-100%) and 68% (uncertainty range 0-100%) for decaying instream vegetation, and 2% (full uncertainty range 0-15%) and 6% (uncertainty range 0-48%) for human septic waste. A reconnaissance survey of sediment oxygen demand (SOD) along the channel designated as a SAC yielded a mean SOD of 4 mg O g dry sediment and a corresponding SOD of 7 mg O g dry sediment, compared with respective ranges of 1-15 and 2-30 mg O g dry sediment, measured by the authors for a range of river types across the UK. The findings of the reconnaissance survey were used in an agency (SW region) catchment appraisal exercise for informing targeted management to help protect the SAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832314PMC
http://dx.doi.org/10.1002/rra.3175DOI Listing

Publication Analysis

Top Keywords

uncertainty range
32
sediment-associated organic
12
organic matter
12
oxygen demand
12
reconnaissance survey
12
range 0-100%
12
dry sediment
12
uncertainty
9
range
9
matter sources
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!