Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world's population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have constructed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, interconnecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2018.03.003DOI Listing

Publication Analysis

Top Keywords

physical map
20
bread wheat
20
gene cloning
12
map
8
map bread
8
wheat chromosome
8
chromosome arm
8
arm 7ds
8
bac clones
8
wheat
7

Similar Publications

Background: Developing interventions along with the population of interest using systems thinking is a promising method to address the underlying system dynamics of overweight. The purpose of this study is twofold: to gain insight into the perspectives of adolescents regarding: (1) the system dynamics of energy balance-related behaviours (EBRBs) (physical activity, screen use, sleep behaviour and dietary behaviour); and (2) underlying mechanisms and overarching drivers of unhealthy EBRBs.

Methods: We conducted Participatory Action Research (PAR) to map the system dynamics of EBRBs together with adolescents aged 10-14 years old living in a lower socioeconomic, ethnically diverse neighbourhood in Amsterdam East, the Netherlands.

View Article and Find Full Text PDF

Mixed reality for preoperative planning and intraoperative assistance of surgical correction of complex congenital heart defects.

J Thorac Cardiovasc Surg

January 2025

Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada; Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada.

Objectives: Mixed reality (MixR) is an innovative visualization tool that presents virtual elements in a real-world environment, enabling real-time interaction between the user and the combined digital/physical reality. We aimed to explore the feasibility of MixR in enhancing preoperative planning and intraoperative guidance for the correction of various complex congenital heart defects (CHDs).

Methods: Patients underwent cardiac computed tomography or cardiac magnetic resonance and segmentation of digital imaging and communications in medicine (DICOM) images was performed.

View Article and Find Full Text PDF

Ligand interaction landscape of transcription factors and essential enzymes in E. coli.

Cell

January 2025

Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:

Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.

View Article and Find Full Text PDF

Introduction: Nutritional issues, including overweight and obesity, along with the rising number of immigrants facing their own nutritional problems, continue to keep Chile on alert.

Objective: To evaluate the epidemiological and nutritional status changes among Chilean and immigrant boys, girls, and adolescents (BGA) in schools evaluated by the National Board of School Aid and Scholarships (JUNAEB) from 2013 to 2023.

Methods: This descriptive study analyzed individual, anonymous, and de-identified data on the nutritional status of BGA in pre-kindergarten, kindergarten, first grade, fifth grade, and the first year of high school using the JUNAEB Nutritional Map.

View Article and Find Full Text PDF

Tiny Machine Learning Implementation for Guided Wave-Based Damage Localization.

Sensors (Basel)

January 2025

Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen, Germany.

This work leverages ultrasonic guided waves (UGWs) to detect and localize damage in structures using lightweight Artificial Intelligence (AI) models. It investigates the use of machine learning (ML) to train the effects of the damage on UGWs to the model. To reduce the number of trainable parameters, a physical signal processing approach is applied to the raw data before passing the data to the model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!