In this present study, poly (N-isopropylacrylamide) as a thermo-sensitive agent was grafted onto magnetic nanoparticles, then ethylenediamine and methylmethacrylate were used to synthesize the first generation of poly amidoamine (PAMAM) dendrimers successively and the process continued alternatively until the ten generations of dendrimers. The synthesized nanocomposite was investigated using Fourier transform infrared spectrometry, thermalgravimetry analysis, X-ray diffractometry, elemental analysis and vibrating-sample magnetometer. The particle size and morphology were characterized using dynamic light scattering, field emission scanning electron microscopy and transmission electron microscopy. Batch experiments were conducted to investigate the parameters affecting adsorption and desorption of rivaroxaban by synthesized nanocomposite. The maximum sorption of rivaroxaban by the synthesized nanocomposite was obtained at pH of 8. The resulting grafted magnetic nanoparticle dendrimers were applied for extraction of rivaroxaban from biologic human liquids and medicinal samples. The specifications of rivaroxaban sorbed by a magnetic nanoparticle dendrimer showed good accessibility and high capacity of the active sites within the dendrimers. Urine and drug matrix extraction recoveries of more than 92.5 and 99.8 were obtained, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2018.02.050 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
Int J Biol Macromol
January 2025
Department of Materials Engineering, Materials and Energy Research Center, Dezful Branch, Islamic Azad University, Dezfool, Iran.
Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O Box 259, Dodoma, Tanzania. Electronic address:
In this study, a highly crystalline anatase/rutile mixed phase carrageenan/TiO nanocomposite with a larger surface area was synthesized via the sol-gel process and calcined at 450 °C and 650 °C. The synthesized composite materials were characterized by FTIR, XRD, SEM, EDX, TEM, BET and TGA. FTIR confirms the presence of C-Ti-O bond formation in composite.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China; Research Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, No.403 Nanchang Road, Urumqi, Xinjiang 830091, PR China. Electronic address:
Foods
January 2025
School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.
Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!