A generalized methodology was developed for automating the detection of radioisotopes from gamma-ray spectra collected from an aircraft platform using sodium-iodide detectors. Employing data provided by the U.S Environmental Protection Agency Airborne Spectral Photometric Environmental Collection Technology (ASPECT) program, multivariate classification models based on nonparametric linear discriminant analysis were developed for application to spectra that were preprocessed through a combination of altitude-based scaling and digital filtering. Training sets of spectra for use in building classification models were assembled from a combination of background spectra collected in the field and synthesized spectra obtained by superimposing laboratory-collected spectra of target radioisotopes onto field backgrounds. This approach eliminated the need for field experimentation with radioactive sources for use in building classification models. Through a bi-Gaussian modeling procedure, the discriminant scores that served as the outputs from the classification models were related to associated confidence levels. This provided an easily interpreted result regarding the presence or absence of the signature of a specific radioisotope in each collected spectrum. Through the use of this approach, classifiers were built for cesium-137 (Cs) and cobalt-60 (Co), two radioisotopes that are of interest in airborne radiological monitoring applications. The optimized classifiers were tested with field data collected from a set of six geographically diverse sites, three of which contained either Cs, Co, or both. When the optimized classification models were applied, the overall percentages of correct classifications for spectra collected at these sites were 99.9 and 97.9% for the Co and Cs classifiers, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331277 | PMC |
http://dx.doi.org/10.1016/j.jenvrad.2018.02.012 | DOI Listing |
BioData Min
January 2025
Department of Statistics, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
Background: This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, 1 Xueyuan Road, Fujian, 350108, China.
Objective: This study aims to identify potential lipid biomarkers and metabolic pathways associated with oral cancer (OC). Then to establish and evaluate disease classification models capable of distinguishing OC patients from healthy controls.
Methods: A total of 41 OC patients and 41 controls were recruited from a hospital in Southeast China to examine the serum lipidomics by Ultra-high Performance Liquid Chromatography Q Exactive Mass Spectrometry (UHPLC-QE-MS).
BMC Pregnancy Childbirth
January 2025
Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, 314001, China.
Background: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In clinical practice, the diagnosis of ICP is predominantly based on the presence of pruritus in pregnant women and elevated serum total bile acid. However, this approach may result in missed or delayed diagnoses.
View Article and Find Full Text PDFMol Med
January 2025
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, Belgrade, Serbia.
The expansion of LEAN and small batch manufacturing demands flexible automated workstations capable of switching between sorting various wastes over time. To address this challenge, our study is focused on assessing the ability of the Segment Anything Model (SAM) family of deep learning architectures to separate highly variable objects during robotic waste sorting. The proposed two-step procedure for generic versatile visual waste sorting is based on the SAM architectures (original SAM, FastSAM, MobileSAMv2, and EfficientSAM) for waste object extraction from raw images, and the use of classification architecture (MobileNetV2, VGG19, Dense-Net, Squeeze-Net, ResNet, and Inception-v3) for accurate waste sorting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!