The influence of temperature (7-43 °C), pH (3.5-7.0) and ethanol concentration (6-25%) on PEFinduced autolysis and the release of mannose from Saccharomyces cerevisiae was investigated. Changes in the release of intracellular compounds absorbing at 260 nm and 280 nm depended on storage conditions and differed among untreated and PEF-treated cells. For untreated cells, the increase of the Abs and Abs values during 3 weeks of storage was very low when incubated in media of different pH, different ethanol concentrations, or at 7° and 25 °C. Conversely, Abs and Abs values progressively increased for PEF-treated cells stored under the same conditions. Although the PEF treatment intensity was the same in all cases, the amount of intracellular material released depended on incubation conditions. Except for cells stored at 43 °C, for which the concentration of mannose in the media after 21 days was around 90 mg L, the amount of mannose released from untreated cells after 21 days of storage was lower than 60 mg L under all other conditions assayed. After the same incubation time, the amount of mannose released from PEF treated cells ranged from 80 mg L, when they were stored in media with 25% ethanol, to 190 mg L when they were stored at 43 °C. Interaction among assayed factors affecting mannose release was investigated in a medium containing 10% ethanol (v/v) and pH 3.5 for 21 days. Although the interaction of both factors delayed mannose release, the medium containing PEF-treated yeasts had approximately twice the amount of mannoproteins as those containing untreated yeasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2017.12.008 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.
Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.
Viruses
December 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
Botanical dietary supplements are widely used, but issues of authenticity, consistency, safety, and efficacy that complicate their poorly understood mechanism of action have prompted questions and concerns in the popular and scientific literature. Black cohosh ( L., syn.
View Article and Find Full Text PDFMolecules
January 2025
Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université Catholique de Louvain, Croix du Sud, 2 Box L7.05.07, 1348 Louvain-la-Neuve, Belgium.
The prevalence of glutathionylated (G-) precursors of polyfunctional thiols (PFTs) over their free forms has prompted investigating how to optimize the enzymatic breakdown of these precursors with yeast during lager, ale, and non-alcoholic/low-alcoholic beer (NABLAB) fermentation trials. Some yeasts have been selected for their higher β-lyase activity on the cysteinylated (Cys-) conjugates (up to 0.54% for SafAle K-97), yet some strains and one maltose-negative var.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów 50a, 70-311 Szczecin, Poland.
Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!