How Partial Atomic Charges and Bonding Orbitals Affect the Reactivity of Aluminum Clusters with Water?

J Phys Chem A

State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100090 , China.

Published: March 2018

We present here a further insight on the hydrogen evolution reactions (HER) of aluminum clusters with one and multiple water molecules. Along with natural bond orbital (NBO) and frontier molecular orbital (FMO) analysis, we compared the reactivities of both anionic and neutral Al, Al, Al, and Al clusters with water in gas phase. It is found that electron flow interactions between these typical Al clusters and HO initiate their reactions, allowing varied charge distribution on the cluster. With an emphasis on the typical Al cluster, we checked out the reactive intermediates, activated complexes, transition states, bond breaking and stereochemistry for it to react with two and four water molecules, respectively. The kinetic- and thermodynamic- allowed reaction pathways are coincident with the experimental observation of Al (OH) being dominant products for Al clusters reacting with water. It is illustrated how additional water molecules function as catalysts enabling strengthened HER activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.7b10635DOI Listing

Publication Analysis

Top Keywords

water molecules
12
aluminum clusters
8
clusters
5
water
5
partial atomic
4
atomic charges
4
charges bonding
4
bonding orbitals
4
orbitals affect
4
affect reactivity
4

Similar Publications

Infrared Spectroscopy of [HO-NO]-(HO) ( = 1 and 2): Microhydration Effects on the Hemibond.

J Phys Chem A

March 2025

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

The hemibond, a nonclassical covalent bond involving three electrons shared between two centers, has attracted considerable attention due to its significance in radiation chemistry. Water radical cation clusters, [HO-X], exhibit two primary bonding motifs: the hemibond and the hydrogen bond. Although hydrogen bond formation typically dominates, recent studies have identified instances of hemibond formation in some systems involving water molecules.

View Article and Find Full Text PDF

The efficient removal of CO from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO)·HO (TriHCO).

View Article and Find Full Text PDF

Gold-Catalyzed Synthesis of (Dihydro)quinolones by Cyclization of Benzaldehyde-Tethered Ynamides and Anilines.

Org Lett

March 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

2-Quinolones represent a versatile class of compounds that are prevalent in natural and medicinally relevant molecules. Here we report a new approach to the selective formation of these structures. By gold catalysis, a range of benzaldehyde-tethered ynamides reacted with anilines, leading to 4-amino-3,4-dihydro-2-quinolones with high efficiency and excellent diastereoselectivity in dichloromethane.

View Article and Find Full Text PDF

Sustainable Sulfonylation and Sulfenylation of Indoles with Thiols through Hexamolybdate/HO-Mediated Oxidative Dehydrogenation Coupling.

J Org Chem

March 2025

Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Arylsulfonylindole and arylsulfenylindole motifs stand as privileged scaffolds in drug discovery. Traditional methods for synthesizing these molecules have relied mainly on prefunctionalized precursors, involving multistep processes and generating a large amount of waste. In this study, we present a modular protocol for the preparation of 3-sulfonylindoles and 3-sulfenylindoles using indoles and thiols as starting materials via hexamolybdate/HO-mediated oxidative dehydrogenative C-S coupling.

View Article and Find Full Text PDF

Effect of Ion-Specific Hydration Forces on the Stability of Water Films on Calcite Surfaces.

Langmuir

March 2025

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.

The hydration force is indispensable for understanding short-range interfacial forces in aqueous systems. Perturbation of the hydration structure by ions generates an ion-specific hydration force. Surface-force measurements on calcite surfaces have suggested that Na decreases the repulsive hydration force by directly adsorbing the surface and disrupting the hydration layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!