The role of resveratrol (RV) as a neuroprotectant is well recognized, and cellular molecules involved in imparting the physiological effect have been well illustrated. However, some ambiguity still prevails as the specific receptor, and downstream signaling molecules are not yet clearly stated. So, we investigated the signaling pathway(s) involved in its cellular protection in the human umbilical cord blood mesenchymal stem cell (hUCB-MSC) derived neuronal cells. The mesenchymal stem cells were exposed to various concentrations (10, 100, 1000 μM) of monocrotophos (MCP), a known developmental neurotoxic organophosphate pesticide, for a period of 24 h. The MAPK signaling pathways (JNK, p38, and ERK) known to be associated with MCP-induced damages were also taken into consideration to identify the potential connection. The biological safe dose of RV (10 μM) shows a significant restoration in the MCP-induced alterations. Under the specific growth conditions, RV exposure was found to promote neuronal differentiation in the hUCB-MSCs. The exposure of cells to a specific pharmacological inhibitor (LY294002) of PI3K confirms the significant involvement of PI3K-mediated pathway in the ameliorative responses of RV against MCP exposure. Our data identifies the substantial role of RV in the restoration of MCP-induced cellular damages, thus proving to have a therapeutic potential against organophosphate pesticide-induced neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-018-0986-zDOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
12
cellular damages
8
cord blood
8
blood mesenchymal
8
stem cells
8
signaling pathways
8
restoration mcp-induced
8
resveratrol prevents
4
cellular
4
prevents cellular
4

Similar Publications

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background: Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.

Methods: EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation.

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus is a common autoimmune disease. Studies have suggested that defective stem cells could be involved in the pathogenesis of systemic lupus erythematosus, which leads to changes in the function of immune cells. By observing the cell morphology, autophagy, and senescence of bone marrow mesenchymal stem cells (BMSCs) from lupus mice and normal controls, this study investigated the role of IL-6 in autophagy and senescence of BMSCs and explored relevant mechanisms.

View Article and Find Full Text PDF

Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.

View Article and Find Full Text PDF

Cell therapy is an emerging strategy for precision treatment of scleroderma. This review systematically summarizes the research progress of mesenchymal stem cell (MSC) and chimeric antigen receptor T cell (CAR-T) therapies in scleroderma and discusses the challenges and future directions for development. MSCs possess multiple functions, including immunomodulation, anti-fibrosis, and promotion of vascular regeneration, all of which can improve multiple pathological processes associated with scleroderma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!