Association between exercise intensity and renal blood flow evaluated using ultrasound echo.

Clin Exp Nephrol

Laboratory of Exercise Physiology, Faculty of Health and Sports Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan.

Published: October 2018

Background: High-intensity exercise reduces renal blood flow (RBF) and may transiently exacerbate renal dysfunction. RBF has previously been measured invasively by administration of an indicator material; however, non-invasive measurement is now possible with technological innovations. This study examined variations in RBF at different exercise intensities using ultrasound echo.

Methods: Eight healthy men with normal renal function (eGFR 114 ± 19 mL/min/1.73 m) participated in this study. Using a bicycle ergometer, participants underwent an incremental exercise test using a ramp protocol (20 W/min) until exhaustion in Study 1 and the lactate acid breaking point (LaBP) was calculated. Participants underwent a multi-stage test at exercise intensities of 60, 80, 100, 120, and 140% LaBP in Study 2. RBF was measured by ultrasound echo at rest and 5 min after exercise in Study 1 and at rest and immediately after each exercise in Study 2. To determine the mechanisms behind RBF decline, a catheter was placed into the antecubital vein to study vasoconstriction dynamics.

Results: RBF after maximum exercise decreased by 51% in Study 1. In Study 2, RBF showed no significant decrease until 80% LaBP, and showed a significant decrease (31%) at 100% LaBP compared with at rest (p < 0.01). The sympathetic nervous system may be involved in this reduction in RBF.

Conclusions: RBF showed no significant decrease until 80% LaBP, and decreased with an increase in blood lactate. Reduction in RBF with exercise above the intensity at LaBP was due to decreased cross-sectional area rather than time-averaged flow velocity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10157-018-1559-1DOI Listing

Publication Analysis

Top Keywords

study
9
renal blood
8
blood flow
8
ultrasound echo
8
rbf measured
8
exercise intensities
8
participants underwent
8
study rbf
8
exercise study
8
exercise
7

Similar Publications

Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.

View Article and Find Full Text PDF

This study investigates the effectiveness of blood flow restriction (BFR) training in maintaining athletic performance during a taper phase in basketball players. The taper phase aims to reduce external load while maintaining training intensity. Seventeen experienced basketball players were randomised into two groups: a placebo group ( = 8, 22.

View Article and Find Full Text PDF

Introduction: The sequential parallel comparison design has emerged as a valuable tool in clinical trials with high placebo response rates. To further enhance its efficiency and effectiveness, adaptive strategies, such as sample size adjustment and allocation ratio modification can be employed.

Methods: We compared the performance of Jennison and Turnbull's method and the Promising Zone approach for sample size adjustment in a two-phase sequential parallel comparison design study.

View Article and Find Full Text PDF

The present study examined the effects of cultural factors(ethnic identity, acculturation, perceived discrimination, and religiosity), derived from the Multicultural Assessment-Intervention Process (MAIP) model, on attitudes toward prescription drug use among Iranian/Persian Americans across the United States. The study consisted of a final sample of 454 Iranian/Persian American adult participants. The results indicated that Iranian/Persian American attitudes toward prescription drug use are impacted by demographic and cultural factors.

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!