In this study, we investigated the ameliorative effects of salicylic acid (SA), metal ion (Fe(II)), and plant growth-promoting bacteria Burkholderia sp. D54 (B) on two tomato genotypes with different Cd tolerances under Cd stress, viz. Liger (Cd tolerant) and Tabd (Cd sensitive). The plant biomass, Cd accumulation, antioxidative response, pigment content and photosynthetic performance were determined. According to the results, exogenous application of SA, Fe(II) and Burkholderia sp. D54 or their complex effectively reduced Cd accumulation and increased biomass of root, stem and leaves in both Cd sensitive and Cd tolerant genotypes. Among all treatments, SA+Fe+B exerted the best performance. Burkholderia sp. D54 effectively alleviated Cd-induced oxidative toxicity in both tomato genotypes, while SA ameliorated oxidative stress in Cd sensitive genotype. Photosynthetic pigment content and photosynthetic rate of Cd tolerant genotype was increased by all treatments, but only SA and Burkholderia sp. D54 treatment increased pigment contents and photosynthetic performance in Cd sensitive genotypes. All treatments significantly decreased Cd accumulation in both tomato genotypes. The effect of Cd reduction was Fe+SA+B>SA>Fe>B. Taken together, our results indicated that exogenous application of SA, Fe(II) and Burkholderia sp. D54 could alleviate the Cd toxicity in both Cd sensitive and Cd tolerant genotypes, although the extent varies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.02.100 | DOI Listing |
J Environ Sci (China)
February 2020
Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China. Electronic address:
Phytoremediation is a cost-effective and environment-friendly strategy for decontaminating heavy-metal-contaminated soil. However, the practical use of phytoremediation is constrained by the low biomass of plants and low bioavailability of heavy metals in soil. A pot experiment was conducted to investigate the effects of the metal chelator ethylenediaminetetraacetic acid (EDTA) and EDTA in combination with plant growth-promoting rhizobacteria (Burkholderia sp.
View Article and Find Full Text PDFJ Environ Manage
May 2018
School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China. Electronic address:
In this study, we investigated the ameliorative effects of salicylic acid (SA), metal ion (Fe(II)), and plant growth-promoting bacteria Burkholderia sp. D54 (B) on two tomato genotypes with different Cd tolerances under Cd stress, viz. Liger (Cd tolerant) and Tabd (Cd sensitive).
View Article and Find Full Text PDFJ Environ Manage
August 2014
Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China. Electronic address:
J Hazard Mater
December 2011
Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, PR China.
Growth and cesium uptake responses of plants to elevated CO(2) and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO(2) (860 μL L(-1)) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg(-1)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!