During infection and budding, human immunodeficiency virus-1 (HIV-1) acquires regulators of Complement Activation (RCAs) along with the host cell membrane on the viral envelope. Activation of host complement system results in opsonization of virus by complement fragments, however the virus evades complement mediated lysis (CoML) by virtue of the RCAs on the viral envelope. The RCAs on HIV-1 envelope process complement protein C3 into various fragments that promote viral entry and infection of cells through different complement receptors. Complement opsonized HIV-1 has been shown in vitro to infect dendritic cells (DCs) in a CR3 dependent manner, although the role of CR3 and CD46 in natural HIV-1 infection is not clear. Surface expression of CR3 and CD46 on DC subsets of 30 antiretroviral naïve, 31 treated (cART) HIV-1 infected individuals and 30 seronegative controls was measured by flow cytometry and plasma levels of cytokines and complement activity (C3c levels) were quantitated by sandwich ELISA. Significantly lower surface expression of CR3 and CD46 was observed on DC subsets in naïve and treated HIV-1 infected individuals compared to controls. Significantly higher complement activation and plasma levels of IL-4, IL-8, IL-10 and IFN-γ were observed in treatment naïve HIV-1 infected individuals than controls. Significantly lower plasma levels of IL-4, IL-6, IL-8 and IL-10 were observed in treated vs. naïve HIV-1 infected individuals. Our findings suggest that alterations in expression of CR3 and CD46 on DCs along with complement activity could be factors that influence viral persistence and HIV-1 disease progression and need to be further evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2018.02.011 | DOI Listing |
Background: Recent declines in HIV incidence among adolescent girls and young women (AGYW) in Africa are often attributed to the expansion of biomedical interventions such as antiretroviral therapy and voluntary medical male circumcision. However, changes in sexual behaviour may also play a critical role. Understanding the relative contributions of these factors is essential for developing strategies to sustain and further reduce HIV transmission.
View Article and Find Full Text PDFSterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in non-dividing cells by reducing the intracellular dNTP pool. SAMHD1 enhances spontaneous apoptosis in cells, but its effects on HIV-1-induced apoptosis and the underlying mechanisms remain unknown. Here we uncover a new mechanism by which SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells through the mitochondrial pathway.
View Article and Find Full Text PDFZhonghua Yu Fang Yi Xue Za Zhi
January 2025
Department of AIDS/STD Control and Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing210003, China.
To analyze the transmission characteristics of newly reported HIV-infected students aged ≥18 years in Nanjing City from 2016 to 2022 and provide evidence for AIDS publicity and intervention among young students. The pol region sequences of newly reported HIV-infected students and non-student HIV-infected individuals in Nanjing City from 2016 to 2022 were collected, and the BLAST tool was used to search the published global non-Nanjing reported HIV infection sequences in the LANL HIV database. The basic molecular transmission network and regional molecular transmission network were constructed using the HIV-TRACE in a pairwise genetic distance threshold of 1.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
HIV-associated neurocognitive disorders (HAND) and viral reservoirs in the brain remain a significant challenge. Despite their importance, the mechanisms allowing HIV-1 entry and replication in the central nervous system (CNS) are poorly understood. Here, we show that α-synuclein and (to a lesser extent) Aβ fibrils associated with neurological diseases enhance HIV-1 entry and replication in human T cells, macrophages, and microglia.
View Article and Find Full Text PDFJ Biol Chem
January 2025
National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India. Electronic address:
MicroRNAs are a part of the integral regulatory mechanisms found in eukaryotic cells that help in maintaining cellular homeostasis by modulating the expression of target genes. However, during stress conditions like viral infection, the expression profile of the microRNAs change, thereby directly modulating the expression of viral genes and/or indirectly targeting the virus by regulating the host genes. The present study intends to identify previously uncharacterized cellular microRNAs, which are significantly modulated upon HIV-1 infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!