In the current study, laminated chitosan (CS):hydroxypropyl methylcellulose (HPMC) composite sponges were exploited as solid matrices for buccal delivery of tripterine phytosomes functionalized with novel mucopenetrating protamine layer (PRT-TRI-PHY). Tripterine (TRI) is a herbal drug widely investigated as a potential anticancer candidate against various types of cancers. However, clinical use of TRI is handicapped by its low oral bioavailability. To surmount TRI pharmaceutical obstacles, TRI phytosomes (TRI-PHY) were prepared using solvent evaporation technique then coated with a protamine layer via electrostatic assembly process. The developed PRT-TRI-PHY showed a nano-metric size of 250 nm and positive zeta potential (+21.6 mV). Sponges loaded with PRT-TRI-PHY demonstrated a sustained release profile with superior mucoadhesion characteristics compared with the counterparts loaded with uncoated TRI-PHY. The ex-vivo permeation study via chicken pouch mucosa revealed that sponges loaded with PRT-TRI-PHY demonstrated 2.3-folds higher flux value compared with sponges loaded with uncoated TRI-PHY. Additionally, in-vivo pharmacokinetic study in healthy rabbits revealed the significantly higher bioavailability of PRT-TRI-PHY compared with TRI-PHY with relative bioavailability of 244%. Conclusively, mucoadhesive CS-HPMC sponges loaded with a novel mucopenetrating nanocarrier, PRT-TRI-PHY, could significantly improve the absorption of tripterine via buccal mucosa which would be of prime importance for its clinical utility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.01.095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!