To investigate whether vasopressin is involved in the secretory mechanism of atrial natriuretic polypeptide (ANP), effects of arginine-vasopressin (AVP) administered iv on plasma ANP levels were studied in conscious, unrestrained rats. The administration of 100 ng and 1 microgram of AVP caused a dose-dependent increase of the plasma ANP level, which was blocked by a V1-receptor antagonist of AVP, and was attenuated by 5 ml blood volume reduction before the stimulation. The injection of less than 10 ng of AVP induced no significant effects on ANP secretion. However, the administration of 5 ng of AVP significantly enhanced ANP secretion induced by intravascular volume expansion with 3 ml saline infusion. These results suggest the possible physiological significance of AVP as a modulator rather than a direct stimulator of ANP secretion from the heart.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo-120-5-2186 | DOI Listing |
Chin J Nat Med
January 2025
Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.
View Article and Find Full Text PDFNat Commun
January 2025
Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.
View Article and Find Full Text PDFCells
January 2025
Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany.
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.
View Article and Find Full Text PDFClin Chem
January 2025
Division of Maternal-Fetal-Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
Background: Genetic screening has advanced from prenatal cell-free DNA (cfDNA) screening for aneuploidies (cfDNA-ANP) to single-gene disorders (cfDNA-SGD). Clinical validation studies have been promising in pregnancies with anomalies but are limited in the general population.
Methods: Chart review and laboratory data identified pregnancies with cfDNA-SGD screening for 25 autosomal dominant conditions at our academic center.
Mol Biol Rep
December 2024
Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear.
Methods: H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!